基本不等式说课稿
在教学工作者开展教学活动前,通常需要用到说课稿来辅助教学,通过说课稿可以很好地改正讲课缺点。那么问题来了,说课稿应该怎么写?下面是小编为大家整理的基本不等式说课稿,仅供参考,欢迎大家阅读。
基本不等式说课稿1
尊敬的各位评委、老师:
大家好!
很高兴能把《不等式的基本性质》一课的教学设计向大家作一展示。下面我将从教材分析、教学目标、教学方法、教学流程、教学评价和教学反思几个方面来阐述我对本节课的安排。
一、教材分析
1、 教材的地位和作用
不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。本课位于湖南教育出版社义务教育课程标准实验教科书七年级上册第五章第一节的内容,主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的“基石”。同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。
2、教学重难点
重点:不等式的概念和不等式的基本性质1。
难点:利用不等式的基本性质1进行简单的变形。
二、教学目标
知识目标:
在了解不等式的意义基础上,掌握不等式的基本性质1。
能力目标:
①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。
②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题,培养学生的数感,渗透数形结合思想。
情感目标:
①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。
②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。
通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。
三、教学方法
1、采用激趣——探究法进行教学,师生互动,共同探究不等式的性质。通过知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。
2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。
3、充分利用多媒体课件辅助教学,突出重点、突破难点,扩大学生知识面,使每个学生稳步提高。
四、教学流程
我的教学流程设计是:从创设情境、激发兴趣开始,经历探究新知、总结规律;针对练习、学习例题;巩固提高、拓展延伸;畅谈收获、分层作业等过程来完成教学。
(一)创设情境,激发兴趣:
师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。并预测比赛的结果。从而自然的引入本节课的学习。
设计意图:通过图片展示,贴近学生生活,激发学生的学习兴趣。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。
学习目标:
1、 理解不等式的基本性质1。
2、 会解简单的不等式。
此时我出示本节课的学习目标和归纳出不等式的概念:
归纳:用不等号“﹥”(或“﹤”、“≥”、“”)连接的式子叫做不等式。符号“≥”读作“大于或等于”,也可读作“不小于”;符号“”读作“小于或等于”,也可读作“不大于”读如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。
(二)探究新知、总结规律
在这个环节,我主要设计了以下二个活动来完成教学任务:
活动1:1、你能用“﹤”或“﹥”填空吗?
(1)5﹥3 (2)6﹥4
5+2﹥3+2 6+a﹥4+a
5-2﹥3-2 6-a﹥4-a
2、(1)自己写一个不等式,在它的两边同时加上、减去同一个数或代数式,看看有什么结果?
(2)小组合作讨论交流,大胆说出自己的“发现”。
本次活动以2组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。
活动2:你能用自己的语言概括不等式的性质吗?
本活动中,我出示直观深刻的天平图片,组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力,然后归纳指出不等式的基本性质1:
不等式的两边同时都加上(或都减去)同一个数或同一个代数式,不等式的方向不变。
当学生概括出结论后,为了使学生对不等式的基本性质1有更全面深入的了解,我还可以提出以下问题,让学生思考:
性质中的“不等号方向不变”的含义是什么?
使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”。
在活动中,我深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。
通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。
设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的`转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。
(三)针对练习、学习例题
1、在这个环节我先是设计了一个练习题,通过练习,进一步巩固了学生的新知,又加深了他们的理解,为学习例题奠定了基础。
如果x-5>4,那么两边都 ,可得到x>9
2、学习例题环节我采用了学生单独完成的方法来进行,因为有了前面的基础,学生很容易的就可以完成例题的解题过程,教师只需强调注意的事项即可。
例1、用“>”或“
(1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。
解:
【小结】解此题的理论依据就是根据不等式的基本性质1进行变形。
例2、把下列不等式化为x>a或x
(1)x+6>5 (2)3x>2x+2
解:
【归纳】把不等式的某一项变号后移到另一边,称为移项,这与解一元一次方程中的移项相类似。例题完成后,要求学生讲解解题思路,以进一步加深理解。
(四)巩固提高、拓展延伸
在这个环节我呈梯度形式设计了不同层次的练习题,针对不同层次阶段的学生,都要求他们完成符合自身实际的题目,以便获得成功的体验,进一步提高学习兴趣。
1、课本P133练习第1、2题;
2、判断是非:
①若a>b,则a-3>b-3 ( )
②若m
③若a-8
④若x>7,则x-4
(五)畅谈收获、分层作业
回顾本节课不等式性质的探索过程和解不等式的方法,谈谈你的心得体会。
1、不等式的概念和基本性质1.
2、简单不等式的变形.
通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了数学的思想方法。
最后是作业设计:
1、看书P132—P133(补全书上留白,划出重点内容,完成读书笔记);
2、习题5.1A组第1题(1)(2),第3题(1)(2);
3、选作:习题5.1B组第1题。
五、教学评价
本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从不等式的意义到不等式的性质的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。在教学设计时,利用多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。
六、教学反思
1、本节课通过学生自主探讨、小组合作得出不等式的概念和性质1.
2、本课设计以问题为载体,探究为主线,培养学生的自主、动手、合作交流能力。
谢谢大家!
基本不等式说课稿2
《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:
知识与技能:
1. 感受生活中存在的`不等关系,了解不等式的意义。
2. 掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1. 教学理念: “ 人人学有用的数学”
2. 教学方法:观察法、引导发现法、讨论法.
3. 教学手段:多媒体应用教学
4. 学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)
紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。
(1)a是负数;
(2)a是非负数;
(3) a与b的和小于5;
(4) x与2的差大于-1;
(5) x的4倍不大于7;
(6) 的一半不小于3
关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的取植
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
反馈练习:用一个小练习巩固三条性质。
如果a>b,那么
(1) a-3 b-3 (2) 2a 2b (3) -3a -3b
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。
引出让学生归纳,等式与不等式的区别与联系
三、拓展训练
根据不等式基本性质,将下列不等式化为“<”或“>”的形式
(1)x-1<3 (2)6x<5x-2 (3)x/3<5 -4x="">3
(1)x—1<3
(2)6x<5x—2
(3)x/3<5—4x="">3
再次回到开头的门票问题,让学生解出相应的x的取值范围
四、小结
1、新知识
一个数学概念;两种数学思想;三条基本性质
2、与旧知识的联系
等式性质与不等式性质的异同
五、作业的布置
以上是我对这节课的教学的看法,希望各位专家指正。谢谢!
“让学生主动参与数学教学的全过程,真正成为学习的主人”。
基本不等式说课稿15
各位评委、各位学员大家好,今天我说课的课题是《不等式基本原理》。我将从教材分析、教学设计、教法学法三个方面来说明。
【说教材分析】
1.教材的前后联系及地位作用
本节课是高中新课程必修4第十章第一节第一课时的内容。
本节的内容是继学习等量关系之后,在实际生活中存在的又一新的关系-----不等关系。不等关系在现实世界与日常生活中大量存在,在数学研究和数学应用中与等量关系同样起着重要的作用,它是学习不等式性质及解法的基础,又是构造方程、不等式与函数的基石;因此本节具有重要的奠基作用。
2.课标要求
通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。掌握比较法。
3.教学目标
基于新课标的要求,结合本节内容的地位,我提出教学目标如下:
(1)知识与技能:
①通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景;
②掌握作差比较法的应用。
(2)过程与方法:
①以问题方式代替例题,学习如何利用不等式研究及表示不等式;
②通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法。
(3)情感态度与价值观:
①通过解决具体问题,让学生在学习过程中的感受、体验、认识状况及理解程度;
②注重问题情境、实际背景的设置,让学生体会数学在生活中的重要作用,培养严谨的思维习惯。
③学生通过对问题的探究思考,广泛参与,使学生改变自己的学习方式,提高学习质量。
3教学重点、难点
根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。
教学重点:理解不等式(组)对于刻画不等关系的意义和价值。理解并应用作差比较法。
根据本节课的内容,以及学生的心理特点和认知水平,制定了教学难点
教学难点:用不等式(组)正确表示出不等关系;作差比较法过程中得变形。
【说教学设计】
一、提出问题、引入新课
问题1:在现实世界和日常生活中,同学们发现了哪些数量关系?你能举出一些例子吗?
(既有相等关系,又存在着大量的不等关系。如两点之间线段最短,三角形两边之和大于第三边,等等。人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。)
问题2: 在数学中,我们用不等式来表示不等关系。下面我们首先来看如何利用不等式来表示不等关系?
【设计意图】问题1:主要是
通过课前的问题展示,让学生感受不等关系与等量关系一样来源于现实世界和日常生活中;随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。
二、思考交流、形成概念
1)用不等式表示不等关系
引例1:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是:
引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p应不少于2.3%,写成不等式组就是--用不等式组来表示
【设计意图】让学生从问题的相同点和不同点中找出列不等关系的方法,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。
三、反馈矫正、巩固提高
. 问题1:某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元,销售量就可能相应减少20xx本。若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?
【设计意图】本题的设计主要是加深学生对不等关系的认识(进一步体现本节的重点)的理解;培养分析问题的能力。在启发诱导的同时,训练了学生观察和概括归纳的能力,同时为下面的例2起铺垫作用,体现认知过程中由简单到复杂,由感性到理性的认知规律。
. 问题2:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种。按照生产的要求,600mm的数量不能超过500mm钢管的3倍。()怎样写出满足所有上述不等关系的不等式呢?
【设计意图】本题的设计是为了进一步使学生更加准确的把握本节知识。突破了如何判断用不等式组正确表示不等式这一教学难点;教学时可先请二位同学(最好是学生自愿)分别上台板演,同学们集体纠正,同时给学生一个解题的规范示例。
.教师将教材的例题和习题整和在一起
【设计意图】本题的设计是为了进一步使学生更加准确的把握本节知识。突破了如何用作差比较法比较大小和证明不等式这教学重点和难点;
探索研究:
a克糖水中有b克糖(a>b>0),若再添上m克糖(m>0),则糖水就变甜了。你能用今天所学的数学知识来解释生活中"糖水加糖会更甜"的现象?
【设计意图】本题的设计是为了让学生体会数学与生活密切联系,体现数学在生活中的重要作用,激发学习兴趣。
四、总结评估、内化结构
【学生活动】
思考讨论得出结论,教师可作适当补充。
1.本节课学习的主要内容是什么?揭示了什么数学思想?
2.通过这节课的学习,你的表现怎么样?你有哪些收获?
【布置作业】
1、必做题:教材后习题以及A组试题
2、课外拓展练习:教师根据学生的实际情况适当补充。
【设计意图】必做题加深对本节内容的理解,并能进行灵活运用,再一次突出本节课的重点。课外拓展练习供学有余力的学生选做,为学生提供选择和发展的'空间,体现了新课标"不同的学生在数学上得到不同的发展"这一基本理念。
【说板书设计】(见课件)
【说教法、学情与学法】
1.说学法
根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
2.说教法
学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
本节教材的特点注重展现知识的形成过程,具有很强的探究性,而且学生参加高中新课程的学习有一段时间了,初步养成了探究习惯和一定的合作交流的能力,绝大多数学生能够积极主动参与数学活动;因此本节课主要采用"引导发现、讨论交流"的教学方法。
3.说教用具与学生用具:
投影仪、胶片、三角尺、刻度尺
【说课综述】
本节课是有一定难度的概念课,我从学生实际出发,照顾到学生的最近发展区,在整个教学过程中采用了"引导发现、讨论交流"的方法来进行教学,最大限度的挖掘学生的潜力;同时学生通过"自主学习"有利于培养学生的创新能力和富有个性化学习方式,从而使学生最大限度发现自己的潜能。
以上即是我对《不等式基本原理》的认识与处理。不妥之处,敬请批评指正,谢谢大家!
【基本不等式说课稿】相关文章:
《不等式的基本性质》说课稿范文04-17
基本不等式教学反思10-29
七年级数学不等式基本性质说课稿03-03
集合的基本运算说课稿10-12
《比的基本性质》的说课稿05-24
《比的基本性质》说课稿11-07
《比例的基本性质》说课稿 12-09
《分数的基本性质》说课稿01-06
分数的基本性质(说课稿)10-27