植树问题教学反思

时间:2024-12-30 07:12:06 教学反思 我要投稿

植树问题教学反思(通用10篇)

  身为一名到岗不久的人民教师,我们的工作之一就是课堂教学,写教学反思能总结我们的教学经验,那么优秀的教学反思是什么样的呢?以下是小编收集整理的植树问题教学反思,仅供参考,希望能够帮助到大家。

植树问题教学反思(通用10篇)

植树问题教学反思1

  “植树问题”是人教版新课程标准实验教材五年级上册第七单元数学广角中的问题,而这个内容以前是安排在四年级下册。在植树问题中,主要是教会学生如何思考,如何分析问题并且将这些知识能潜移默化的给大家以思考路线。

  教材将植树问题分为三个层次:两端都栽、两端不栽和环形(一端不栽)。教学过程中需向学生渗透数形结合、探究推理和一一对应的数学思想,同时使学生将这一数学问题拓展,感知到这是一种数学额模型,可以提高学生的思维拓展能力。

  我这节课主要解决的是两端都栽的植树问题,通过观察、操作及交流活动,探索并认识将问题探究推理的方式,并能将这种认识应用到解决类似的实际问题之中。运用数形结合的思想,培养学生借助图形解决问题的意识。并借助图形,利用一一对应的规律来解决实际问题。反思整个教学过程,我认为本节课有以下几点做得比较好:

  首先,设计层次分明。整节课设计基于学生的实际情况,课前通过猜谜语的方式,吸引学生的注意力,然后通过探索手指数与间隔数的关系,人民大会堂前柱子数与间隔数之间的关系。通过这两个问题推理探究到新知识——植树问题。给与学生一个较大的数据,不能一眼就看出结果,但是能通过猜想假设,并运用一一对应的这种关系来得到对于两端都栽的植树问题得到植数棵树比间隔数多一。可是在这其中就包含了对于植树这一类的数学模型我们可以通过简化的线段图来简化思考过程,淡化图形意识。毕竟对于10多岁的小孩子,他们的潜意识还是以完整的图形思维为主,为了培养他们简化思考过程。其次,联系生活进行拓展思维。当学生体验到植树问题,但如何去将这种模型推广化就值得思考!体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能达到继续建构学习的'水平。所以,这节课我多次向学生提供体验的机会,而且创设能够激发学生共鸣的情境。从植树、路队、楼房、锯木等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲望。

  这节课虽然层次分明,联系实际,但问题仍然存在。一、学生认知起点与知识结构的逻辑理解性存在差异,无法将规律运用于求路长的问题。只有部分学生掌握,这恰恰说明学生能找规律不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数—1,路长=间隔数×间隔长”知识的扩散。二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平,可以利用实例来帮助学生学习。

  对于自身的学习还有待加强,对于知识的拓展,像“数学史上有个20棵树植树问题”!我们不能仅仅停留在知识的表面,而要试着走出去,并在教学中体现出来,引发学生的思考、探究、创新。

植树问题教学反思2

  一、教学目标:

  1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。

  2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。

  3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  二、教学重点:理解植树问题棵树与间隔数之间的关系。

  教学难点:会应用植树问题的模型灵活解决一些相关的实际问题。

  三、教具准备:多媒体课件和未完成的表格。

  四、教学过程:

  课前准备:(多媒体放映牛顿和苹果的故事)

  师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)

  谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的.思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?

  (一)、提出问题、引发思考、探究规律。

  1、手引发的思考。

  师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?

  师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。

  2、整体感知、确定研究方向。

  课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?

  展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)

  理解:“间隔”、“间隔数”、“棵数”。

  (二)、小组合作,探究规律

  1、提出问题。

  课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?

  学生的猜测可能有不同的结果:1000;1001;1002)

  2、自主探究。

  棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。

  课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。

  引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?

  让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。

  3、发现规律。

  学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。

  师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?

  课件动态演示:一个间隔对应一棵,这样一直对应下去, 1000个间隔就有1000棵,种完了吗?

  师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。

  4、总结归纳。

  归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。

  5、总结规律。

  师:你们能用一个式子把规律表示出来吗?

  【板书】间隔数+1=棵数 棵数-1=间隔数

  6、联系生活

  在我们生活中存在着很多类似植树问题的现象,你发现了吗?

  让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。

  (三)、点击生活

  ①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结( )

  ②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?

  ③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?

  ④ (求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?

  (四)、拓展延伸。

  (课件出示世界著名数学问题)

  师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?

  早在十六世纪,古希腊等国完成了十六行的排列。(出示图1)

  十八世纪,美国数学大师山姆完成了十八行图谱。(出示图2)

  进入二十世纪,数学爱好者绘制出了二十行图谱,创造了新纪录并保持至今。(出示图3)

  (结语)今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!

植树问题教学反思3

  人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。

  1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。

  2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。

  3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应用,培养学生的应用意识和解决实际问题的能力。

  (1)引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。

  (2)理解间隔数与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。

  (3)学习单、多媒体课件、小树和小路模型。

  (一)问题导入:

  教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”

  (二)探究新知:

  1.队列问题:

  并出示课题。

  (1)体会“化繁为简”思想:

  突出矛盾:数字太大,不易思考,引导学生转换较小的数。

  明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)

  (2)设计三种植树方案:

  引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。

  ①学生活动,教师巡视。

  ②汇报、展示:

  ③小结:组织学生对不同方案进行命名,突出其主要特征。

  教师板书:两端都种、只种一端、两端不种

  (3)探究规律:

  ①求间隔数:

  教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。

  在没有植树的棵数时,探究间隔数与全长、间隔的关系。

  组织学生独立思考,借助学具、线段图等形式探究规律

  a:学生思考并摆学具或画线段或列算式。

  b:汇报:

  ②探究间隔数与棵数的关系:

  小组合作完成探究,活动要求:

  1)自己选择适合的间隔长度,四人小组合作完成记录表。

  2)小组选择一种植树方式进行探究。

  3)可以借助摆学具、画线段、数手指或列算式的方式。

  a:学生小组活动,教师巡视。

  b:学生汇报发现规律,教师板书。

  c:升华:

  三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。

  d:应用:

  (三)巩固提升:

  1.选一选:

  下面每一题相当植树问题的哪一种情况?

  (1)音乐中的“五线谱”( )

  (2)衣服上的纽扣( )

  (3)成语“一刀两断”()

  (4)自鸣钟九点报时的钟声( )

  a.两端都种 ; b.只种一端; c.两端不种。

  (1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )

  (2)一根10米长的`木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )

  4.学校一条大路的一边共插了20面彩旗。

  (1)如果使两面彩旗中间放一盆花,一共要放多少盆花?

  (2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?

  (四)课堂总结:

  师:今天我们学习了什么?你有什么收获?

  生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。

  通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。

植树问题教学反思4

  “植树问题”是人教版四年级下册第八单元的内容,本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生发现一些规律,抽取出其中的数学模型,然后在用发现的规律来解决生活中的简单实际问题。

  本单元的植树问题分为三种类型:两端都栽、两端不栽、在一条首尾相接的封闭曲线上植树。我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单情境入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。反思整个教学过程,我认为我执教的这节课整体是成功的。

  第一、预习安排得比较巧妙。从学生熟悉的手指切入,理解什么叫间隔,手指数与间隔数的关系,转化为树与间隔数的关系,得出:棵树=间隔数+1。

  第二、教学环节设计由浅入深。在学习完例题后的检测中我先设计了一个和例题基本一样的题型(课本下面的做一做)让学生练习,这道题告诉我们的信息是“2的街道两旁路灯,每个50安一盏”问题是“一共安装多少盏”它一方面检测学生对刚学习的知识是否掌握,另一方面检测学生是否认真审题。另外设计了一个求棵树的变式练习,在最后的拓展环节中又设计了一个求间隔数的练习题,整个环节给人一种稳步高升的感觉。充分体现了数学的由浅入深、由易到难的思想。

  再次,学生学习的积极性较高。本节课学生预习较充分,对新知有了一定的认识,学习起来相对容易些,比如再找棵数与间隔数之间的关系时,一方面有了预习题的`基础,再加上充分的预习,学生很快就得出了他们之间的关系,所以很快解决了检测的题,留下的遗憾就是学生审题不认真,只注意到了单位的不统一,没有注意“两旁”一次,方法对了,缺少了一半。后来的练习在提醒学生认真审题后,学生的积极性更高,争先恐后要求上台展示。

  这节课虽不错,但问题也存在着。

  一、学生在展示时语言表达不够完整。在说思路时总说半截话,需要教师的提醒在说完整,导致说的解题思路不够清晰,因此在今后学生手思路时要求学生按顺序;第一步、第二步、第三步。一步一步来说。

  二、在拓展训练中引导不到位。求路长,实际还是先求“间隔数”,没让学生弄明白。

  三、总结规律时本人在复述时叙述不完整,没有强调“两端都栽”这个前提条件。这也说明,本人在语言叙述中也存在问题,也折射出本人数学思维的不严密,也导致学生的课堂语言出现问题。这也是本人应该深思的,更应该改进的。

植树问题教学反思5

  日常生活中的数学广泛存在着,数学广角是让学生体会数学与生活的联系,感受数学的重要性。排列和组合的思想方法不仅应用广泛,也是发展学生抽象能力和逻辑思维能力的好素材,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来。

  通过本节课的学习,使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。在教学《数学广角》时,我没有按知识结构为主线,而是围绕学生的学习情感与体验来组织教学。创设“游数学广角”的故事情境,穿衣服——吃早点——游数字乐园(数字搭配)——聪聪给大家的启示,一系列的情境。内容贴近学生生活实际,使学生体会数学的应用价值。学生乐意学,主动学,不仅获得了知识,更获得了积极的情感体验。但是在组织教学上,我没有让学生充分的'去说自己的想法,总想替学生说出来,这是一直以来我最爱犯的大忌。数学老师要求数学语言精密严谨,评课老师给了我宝贵的点评,说话有点碎,有点杂。在以后的教学中我会多加锻炼,尽量使自己的语言符合一名数学的基本语素。

  总之,这节课较前两次的成长课来说,感觉自己进步了很多,找到了上公开课的感觉。我要跟学生们一起成长,一起学习,一起体验。

植树问题教学反思6

  《植树问题》是三年级第一学期教材数学广场中的教学内容,也是二期课改中数学拓展性的知识。是曾经无数次被搬上?舞台?演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点: 任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都种”“只种一端”与“两端都不种” 。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结”的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。 但是在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。

  二、第一次试教分析:

  从而探究出两端都要植树时的间隔数和棵数之间的关系,要求是这样的:设计:全长( )米,每隔5米,有( )个间隔,种( )棵树让学生独立思考,画线段图,填表,汇报。本以为自己设计的教案考虑到了学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,是可行的,学生们应该是能够掌握的。可是在实际的教学过程中,在“植树”时还是跃跃欲试的学生们到“探究规律” 时一个个都像被打败公鸡,毫无斗志与反应。勉强参与的总是那几个平时成绩比较优秀的学生。看来这样的设计无法顾及全体学生的发展。没有了学生的主体参与,何来思维的培养,主题的建构呢?我开始反思:为什么学生不能找到简单植树问题的规律呢?为什么缺乏参与的积极性呢?学生一脸的茫然。经过反复的思考,我想到了我设计的探究活动有一定的'问题,对于学生来说太抽象,太难了,自己确定长度时,要考虑到平均分还要分完,只给学生一条线段,他们不知道从何下手。我请教有经验的老师们,自己又反复琢磨,调整了自己的教学过程,从简单入手的思想,使这节课主线更清晰明朗了,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。这样能灵活构建知识系统,注重教学内容的整体处理。又能活用教材,对教材进行了整合和重构,让资源启迪探究。激发了学生探究的欲望。让学生比较系统地建立植树问题的三种情况,即两端都植;两端都不植;封闭情况下的植树问题(一头植和一头不植)。

  三、第二次试教分析:

  我把目标制定为:知识性目标:利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。过程性目标:进一步培养学生从生活实际问题中发现规律,应用规律解决问题的能力。

  为了让学生掌握物体个数与间隔数的关系,课前我布置学生去数一数路灯排列有什么规律,初步感受物体个数与间隔数的关系,这样首先让学生在生活中学会有所观察,有所思索,有所实践。既能激起学生强烈的求知欲,做好课前准备,又能体会到数学知识在生活中的实际应用价值。在教学过程中,我创设情景聘请学生做环境设计师,说明学校南墙边有一段40米的小路,学校准备在路的一侧种树,按照每隔10米种一棵的要求设计一份植树方案,并说明设计理由,择优录用。我先请学生估计产生不同的意见,此时需要验证,怎样验证,学生想出不同的办法,给学生动手操作的时间和空间,让学生在操作中感悟,学生通过摆一摆,数一数,得出结果。学生的思绪一下打开了,最后出现了三种方案:第一种,两头都种,有5棵数。这样可以让学校有更多的绿色。第二种有3棵,头尾都不种。因为节约成本。第三种有4棵。种头不种尾;或者相反;又或者考虑树的实际生长空间不够,成本既不太高,绿色又不会太少。在这个环节,学生在实际操作中初步感受植树问题的特征,这个时候我利用模具加以归纳、总结,形成规律。学生靠自己主动、独立地完成所学任务,发现规律,发现特点,找到窍门,感到非常高兴,记得牢固。

  四、第三次试教分析:

  首先,创设了情境,学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。不仅需要向学生提供多次体验的机会,而且还需要创设能够激发学生共鸣的情境。在举例过程中,比如手指之间的点段,座位之间的位置关系,并且还利用了“一刀两断”来说明锯木头的问题,让我惊喜不已。学生真正的生活经验是他们身边熟悉的事物,这时的学生才会真正感兴趣,才能够产生共鸣,才易激发探究的欲望,让活动化的数学学习有个坚实的基础。

  五、反思:

  1、通过自主探索的活动,让学生获得学习成功的体验,增进学好数学的信心。

  结合学生的年龄特点和教学内容,我设计了很多需要学生自主探索的活动。例如:在创设情境、导入新课的第2个小环节中“如果你是园林工人,你会怎么种?”,让学生自主探索出在一条路上植树时,有3种不同的情况:“两端都种”“两端都不种”“只种一端”;再如:在自主探究、建立模型这一环节中让学生自定路长和间距,通过画图的方法验证“间隔数”与“棵数”之间的规律。又如:在最后联系实际,综合练习时,我放手让学生自选习题进行解答。

  2、渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。

  “授人以鱼不如授人以渔”,新课程理念有个更具“与时俱进”的显著特点是对渗透数学思想方法的关注。在本课的教学过程中,要充分利用学生想检验大数目时遇到困难,可引导通过“以小见大”来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。

  教学过程是这样的:在学生已经掌握了两头都植的规律的探究方法后,让学生分组自主寻找两头都不植的规律,学生通过自己动手画,自己整理表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生积极性。

  3、关注植树问题模型的拓展和应用,注意反映数学与人类生活的密切联系。

植树问题教学反思7

  本节课的内容主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。但对这些数学方法的.挖掘和处理可谓“仁者见仁,智者见智”。我觉得这一课的数学思想方法主要是“化繁为简”或者说是从简单入手寻找规律,而这种方法在北师大版教材中体现得淋漓尽致,而在人教版教材的编排上可谓“若隐若现”,因此我觉得我们使用人教版教材的课堂,应该充分挖掘教材教给学生这种解决问题的策略。

  课堂教学中我安排了三个层次的探究活动,从实物操作到画线段图到类比推理,有效地突出了解决问题策略的重要性和多样性。学生在课堂上也领略到数学智慧的夺目光彩,增强了学生学习数学的兴趣和信心。通过本课的设计和实践,我更迫切地感受到数学思想和方法在学生学习和生活中的重要性,因此对数学思想和方法在课堂中落实的研究迫在眉睫。这也是当前数学课堂中存在的重要缺失,身为学校教研员更为向广大教师传播数学思想和方法的重要性,并提出渗透数学思想,教给学生数学方法的有效措施。

  本课中为了突显解决问题策略的多样化和完整性,我把教材中原本安排两课时完成的内容缩成一课时。而且在这一课时我把教学重点放在学生解决问题策略的学习、理解上,因此对于本课的知识点的处理上略显不足。

植树问题教学反思8

  本节课的内容是在学习两端都栽、两端都不栽的基础上进行教学的。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。

  成功之处:

  1.多种方法解答,拓展学生的思维。在例3的教学中,通过学生自主探索,发现四种解题方法如下:

  方法一:黑色棋子+白色棋子=可以摆的棋子

  19×2 + 17×2

  =38+34

  =72(个)

  方法二:每边的个数×4边=可以摆放多少个

  18 × 4 = 72(个)

  方法三:每边能放个数×4-重复的4个=可以摆放的棋子

  19×4 - 4

  =76-4

  =72(个)

  方法四:每边看作17个,有4边,再加上四个角的4个。

  17×4 +4

  =68+4

  =72(个)

  通过这几种方法的展示,让学生不仅仅局限于一种解题思路,而是根据自己的实际水平选择适合的方法,利用培养学生思维的灵活性和拓展性。

  2.不拘泥于课件的.使用。在例3的教学中,虽然每种解法都制作了课件,但是在实际的教学中发现利用在黑板实际画图,分析每一种解法,更加有利于学生对此解法的分析,利用学生对每种解法的理解。

  不足之处:

  在拓展解题思路的同时,相应地就减少了练习的时间,导致练习量不足。

  再教设计:

  每种解法不再利用课件进行展示,在黑板上画图进行分析和理解,减少课件制作上的费时费力。

植树问题教学反思9

  “植树问题”是人教版五年级上册“数学广角”的资料,教材将它分为以下几个层次:“两端都栽”、“只栽一端”、“两端都不栽”、“封闭图形情景”以及”方阵问题”等。本节课要解决的是两端都栽的植树问题,主要目标是向学生渗透一一对应的数学思想,初步感悟“化归”的解题方法,构建植树问题数学模型。设计教学时,我运用“问题导学,互动探究”的教学模式,即以问题情境为载体,进行自主学习,以认知冲突为诱因,展开合作探究,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。根据学生的认知规律,我设计了以下几个环节:

  一、观看图片,寻找数学信息,让学生初步认识间隔,感知间隔数与手指数的关系。二、以一道植树问题为载体,放手让学生自主学习,应用不一样方法解决问题,引发学生认知冲突。三、抓住课堂生成的契机,以生活中植树问题的应用为研究对象,再度质疑,引导学生合作探究植树问题的实质。四、多层次、多角度的达标测评练习,拓展学生对植树问题的认识。

  反思整个教学过程,我认为这节课有以下几点做得比较好:

  1、经过自主探索的活动,让学生获得学习成功的体验,增进学生学好数学的信心。结合学生的年龄特点和教学资料,我设计了很多孩子喜闻乐见的教学环节。例如:在问题导入时,让学生根据不完成全的应用题,对缺少条件的应当题大胆进行猜测,激发学习兴趣。再如:自主学习、互动合作这一环节中让学生选择自我喜欢的方法解题、验证“间隔数”与“棵数”之间的规律。

  2、渗透一一对应的思想方法,培养学生数学思维本事和解决问题的本领。让学生经过观察、猜测、实验、交流等活动,既学会一些解决问题的.一般方法和策略又逐步构成求实态度和科学精神。

  3、注意反映数学与人类生活的密切联系。

  本节课的教学资料本来就是来自于生活,经过观察生活找出解决这类问题的规律,从而应用于生活。所以,我设计的每一环节都紧扣生活,以解决生活中的问题为主线,有目的地进行数学学习活动,使学生学得趣味,同时,增强了数学学习的应用价值。

  4、本课的练习本着由易到难,循序渐进的原则,有以下两个层次:

  (1)直接应用,解决比较简单的实际问题。在巩固练习中,我安排学生完成已知间隔数求棵数及已知棵数求间隔数的两道填空题,以及“做一做”中明白总长和间距求棵数的练习,让学生从正反两个方面出发解决简单的实际问题。训练学生双向可逆思维的本事。

  (2)现实生活中的许多不一样事件都包含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它。如上楼梯、排队、敲钟、锯木头等,所以在后面的提高练习中,我把这些生活中常见的现象编进题目中,让学生拓宽视野,解决生活中不一样现象的“植树问题”。

  这节课的不足是过于侧重于植树问题的原理,课堂的练习密度不够,从练习中也反馈出个别学生吃不透的现象。所以今后教学时要注意把握好度,适当进行取舍,照顾好中差生。

植树问题教学反思10

  上周进行了课本的最后一单元数学广角的学习,包括《沏茶问题》、《烙饼问题》、《田忌赛马》等3个课时。教材通过对生动有趣的生活事例及古代故事的分析,让学生从多角度经历在多种解决问题的方案中寻求最优方案的过程。本单元的难点在于如何让学生在具体问题的解决中感悟抽象的数学思想。因此在开展本单元前我查找了有关教辅书籍和资料,从以下几个方面去着手:

  沏茶问题“教什么”和“怎样教”、“烙饼问题”仅仅会烙就可以了吗?“对策问题需要掌握几个点”?带着这些问题我开始了整单元的教学。下面我将课后反思整理如下。

  在第1课时《合理安排时间》中存在以下问题比如在引导学生研究如何在最短的时间内使客人喝上茶的教学环节上,教学重点不够突出,学生讨论的时间不够充分,展示学生设计的不同方案时,在方法的引导上也做得不够,有些学生对于同一时间内可以同时完成几件事理解不透。有的同学能找出哪些事情可以同时做,但是却忘了事情的先后顺序,比如只能先淘米,才能煮饭,顺序不能颠倒。

  第二课时《烙饼问题中》首先带领孩子们理解每句话的意思,然后抛出3张饼怎样烙最省时,在学生的回答中我发现,生活经验对数学学习有较好的帮助,但有时也有负作用。例如,有位小朋友竟这样问我:其中一个饼烙了一面后拿下,过了3分钟就要冷了,再烙另一面3分钟就不够了。实际情况是这样的,但若把它当成一个数学模型来研究时,这些就忽略不计了,这就是数学与生活的区别。所以对这种情况,我私下及时对他作出回应,并给予解释。数学是理性的.,抽象的,更是严谨的。教学中如何把握课堂每一个细节,从而来培养学生思维的深刻性。例如,在提升烙饼的时间与所烙饼的个数的关系时,我应该及时提问:?烙2个饼需6分钟,烙3个饼需9分钟……每个饼需3分钟,有没有不符合规律的。而事实上是有特例的:当饼的个数是1个时,就不符合此规律。所以我觉得自己在这方面还有欠缺,应抓住时机拓展延伸,从而来引发学生的思维冲突,并通过辨析来修正此规律。?总之,重新创造和使用身边的教学资源要在优于教材上提供资源的情况下进行,在教学中要认真钻研教材,合理使用教材资源。至于所上的课,我不管失败还是成功,只要自己努力钻研了,其结果并不重要。我总相信这样一句话:不磨高一尺,怎能道高一丈呢?

【植树问题教学反思】相关文章:

植树问题教学反思06-10

植树问题教学反思05-18

《植树问题》的教学反思05-16

《植树问题》教学反思05-25

《植树问题》教学反思09-20

植树问题教学反思09-06

《植树问题》教学反思【合集】05-25

数学《植树问题》教学反思10-25

(热门)《植树问题》教学反思07-26

《植树问题》教学反思(优选)07-26