七年级数学说课稿15篇(精品)
作为一名人民教师,时常需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。说课稿应该怎么写才好呢?以下是小编整理的七年级数学说课稿,仅供参考,欢迎大家阅读。
七年级数学说课稿1
各位老师:
大家好!今天我说课的题目《整式的加减》第1课时。
一、教材分析:
本课选自新人教版数学七年级上册第二章第二节第一课时,是学生进入初中阶段后,在学习了单项式、多项式以及有理数运算的基础上,对同类项进行辨别、探究、合并的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上,可以说合并同类项是有理数加减运算的延伸与拓展。因此,这节课是一节承上启下的课。
二、学情分析:
学生已经学了有理数的运算、单项式和多项式等内容,具备了学习本节所必须的`基本运算技能。在相关知识学习的过程中,学生已经经历了一些通过代数式的运算来解决问题、进行推理的活动,能解决一些简单的现实问题,具有一定的运算能力;同时在以前的数学学习中,经历了很多合作学习、互助学习的过程,具备了一定的合作和交流的能力。
三、教学目标
1.知识目标
使学生理解多项式中同类项的概念,会识别同类项,掌握合并同类项的法则;利用合并同类项法则来化简整式。
2.能力目标:
在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3.情感目标
激发学生的求知欲,培养独立思考和合作交流的能力,让他们学会分享成功的喜悦。
四、教学重点、难点
重点:了解同类项的概念,掌握合并同类项的法则。
难点:正确判断同类项;准确合并同类项。
五、教学过程
1.创设情境:先用课件展示三类生活中的常见事物,让学生加以分类,再让学生根据自己的生活知识回答问题、列举生活中的分类。这样设计的意图是以具体生活经验为背景,有效的吸引学生的注意力,增强好奇心及求知欲。
2.形成概念:让学生在下列单项式中找出具有共同特征的单项式,进行分类.并说说自己的理由.
指导学生先观察各式,再分组讨论他们的共同特点。然后思考:归为同类需要有什么共同的特征?这时教师可以引导学生看书,让学生理解同类项的定义。
这样设计可以让学生充分发挥主体作用,从自己的视角去观察、归纳、总结得出同类项的概念。有利于培养学生的观察、自主探索和合作交流的能力。
3.强化概念:下列各组中的两项是不是同类项?说明理由。
七年级数学说课稿2
尊敬的各位专家评委、各位同仁:
大家好!我是安溪县湖上中学数学教师张象稳,能参加这次说课评比活动,我感到十分高兴,同时也非常珍惜这样一个难得的交流和学习的机会,希望大家多多指教。我今天的说课课题是合并同类项。
以下我就五个方面来介绍这堂课的说课内容:
一、 教材分析
(一)。教材地位、作用
本节课选自华东师大版《数学》七年级上§3.4节第2课时内容,是一堂探究活动课。是在结合学生已有的生活经验,引入用字母表示有理数,继而介绍了代数式、代数式的值、整式、同类项以及有理数运算律的基础上,对同类项进行合并的探索、研究。()合并同类项是本章的一个知识重点,其法则以及去括号与添括号的法则应用是整式加减的重点,是以后学习解方程、解不等式的基础。因此学好本节知识是学好后续知识的主要纽带,同时在合并同类项过程中不断运用数的运算,又合并同类项是建立在数的运算律的基础上,让学生体会到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想。
(二)、教学重点、难点
1、重点:合并同类项的法则的运用。
2、难点:合并同类项的法则的形成过程。
(三)、教学目标
根据上述教材结构特点与教学重、难点,考虑到学生已有的认知结构、心理特征,结合新课改理念,特制定如下教学目标:
1.知识目标
(1)、掌握了什么样的项是同类项的基础上,通过具体情境探究得出同类项可以合并,并形成合并同类项的.法则。
(2)、能运用合并同类项的法则进行合并同类项。
2.能力目标
(1)、通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。
(2)、通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。会利用合并同类项的知识解决一些实际问题。
(3)、通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力。
3.德育目标
(1)、通过由数的加减推广到同类项的合并,可以培养学生由特殊到一般的思维认知规律。
(2)、通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识。
4.美育目标
通过合并同类项,学生们能明显地感觉到数学的形式美、简洁美,感悟到学数学是一种美的享受,爱学、乐学数学。
二、 教学方法、手段
1. 教学设想
突出以学生的"数学活动"为主线,激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。
2. 教学方法
利用引导发现法、讨论法,引导学生从具体生活情境及已有的知识和生活经验出发,提出问题与学生共同探索、学生与学生共同探索,以调动学生求知欲望,培养探索能力、创新意识。
3. 教学手段
利用多媒体创设教学情境,引导学生观察、探索、发现、归纳来激发学生学习兴趣、激活学生思维,以利于突破教学重点和难点,提高课堂教学效益。新课标提倡教学中要重视现代教育技术、要引导学生独立思考、自主探索与合作交流,让学生掌握知识的发生发展过程,主动去获得新的知识,学会获取知识的方法,因而在教学中创设情境让学生乐意并全身心投入到现实的、探索性的数学活动中去。
三、学法指导
自主探究法:主动观察→分析→思考→比较→探索→联想→猜测→类比→归纳→例题探索→练习挑战、巩固提高→总结
七年级数学说课稿3
今天我将要为大家说的课题是:有理数的加减法第一课时
首先,我对本节教材进行一些分析
㈠教材结构与内容简析
本节内容在全书及章节的地位:略
㈡教学目标:
1.知识与技能:
使学生掌握有理数加法法则,并能运用法则进行计算;
2.过程与方法:
在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力
3.情感态度与价值观
通过师生合作,联系实际,激发学生学好数学的热情,感受加法无处不在,无处不有。
㈢教学重点:有理数加法法则。
㈣教学难点:异号两数相加的法则。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
㈤教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,
我在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点,应着重采用活动探究式的教学方法
㈥学法
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
1、理论:记忆加法法则;
2、实践:足球赛记分动笔动手;
3、能力:加法运算能力
㈦教学准备:课件或章前足球赛图
㈧教学设计:
一、创设情景,孕育新知
活动一:观摩足球赛:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了2球,那(3)(2)=5.①
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)(-1)=-3.②现在,请同学们说出其他可能的情形.
答:上半场赢3球,下半场输2球,全场赢球,也就是
(3)(-2)=1;③
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)(2)=-1;④
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(3)0=3;⑤
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)0=-2;
上半场打平,下半场也打平,全场仍是平局,也就是
00=0.⑥
二、自主探究,获取新知
活动二:现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
活动三:
应用举例变式练习
例1计算下列算式的结果,并说明理由:
(1)(4)(7);(2)(-4)(-7);
(3)(4)(-7);(4)(9)(-4);
(5)(4)(-4);(6)(9)(-2);
(7)(-9)(2);(8)(-9)0;
(9)0(2);(10)00.
学生逐题口答后,教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
解:(1)(-3)(-9)(两个加数同号,用加法法则的第2条计算)
=-(39)(和取负号,把绝对值相加)
=-12.
活动四:教学22页例1、例2(详见课本)
三、巩固练习,运用新知
活动五:练习:23页1.2
四、归纳小结,升华新知
同学们分组讨论,学习了哪些知识?并交流。
有理数加法法则:
1.同号两数相加,取相同的'符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
五、回归实践,再用新知
作业:31页:课外作业选做
针对学生素质的差异进行分层训练,既使学生掌握基本知识,又能够使学生获得基本技能!
七年级数学说课稿4
尊敬的各位领导、各位老师:
下午好!
今天,我说课的题目是鲁教版义务课程标准实验教科书七年级下第十一章第二节《不等式的基本性质》,主要从以下几个方面进行说课:教材分析,教法分析,学法指导,教学过程设计,教学评价.
一,教材分析
本节课主要研究不等式的性质和简单应用.它是进一步学习一元一次不等式的基础.它与前面学过的等式性质有联系也有区别,为渗透类比,分类讨论的数学思想提供了很好的素材.这节课在整个教材中起承上启下的作用.它是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。
结合本节课的地位和作用,设计本节课的教学目标如下:
1、知识目标:
(1)探索并掌握不等式的基本性质,能解简单的不等式;
(2)理解不等式与等式性质的联系与区别;
2、能力目标:
(1)通过不等式性质的探索,培养学生的观察,猜想,分析,归纳,概括的逻辑思维能力:
(2)通过探索过程,渗透类比,分类讨论的数学思想;
3、情感目标:
(1)培养学生的钻研精神,同时加强同学间的合作与交流;
(2)让学生获得亲自参与探索研究的情感体验,从而增强学习数学的热情,
(3)通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。
结合本节课的教学目标,确定本节课的
重点是不等式性质及简单应用.
难点是不等式性质的探索过程及性质3的应用.
为了突出重点,突破难点:采用实物投影仪展示学生不同层次的思维探索过程,化抽象为具体;用类比,对比的方法化生疏为熟悉,化零散为系统.
二、教法分析,教学手段的选择:
为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即采取观察猜测---直观验证---推理证明---得出性质。在知识的发生发展中渗透类比,分类讨论的数学思想,学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.为了突破学生对不等式性质3,理解的困难,采取了类比作化抽象为具体的方法来设置教学。
三、学法指导:
由于七年级学生有比较强的好奇心,好胜心以及显示欲.同时经过一年初中数学的思维锻炼,已经初步具备了提出问题,分析问题和解决问题的能力,基于学生的以上心理特点及认知水平,所以采取动手实践,自主探索,合作交流的学习方法.这样可以使学生积极参与教学过程.在教学过程中展开思维,进一步培养学生提出问题,分析问题,解决问题的能力,进一步理解类比,分类讨论等数学思想.
四、教学过程设计
基于以上教材分析,紧紧围绕本节课的教学目标,从学生的.认知水平出发进行如下的教学设计:
1.创设情境,类比猜想
提出问题:今年我比你大10岁,5年后,我比你大还是比你小,大几岁,小几岁?
2年前,我比你大还是比你小,大几岁,小几岁?
类比等式的性质1,不等式有类似的性质吗?
【设计意图】通过一些生活实例启发学生思考,猜想不等式的性质1
2、举例说明,验证结论
设计小活动:你说我验
同桌合作,举几个例子,可以是数字例子,也可以是生活当中的例子。相互验证一下你猜想的是否正确
【设计意图】通过这个活动旨在增强教学的有效性,一方面增强学生间的合作意识,另一方面增强学生思考的严谨性。活跃课堂气氛,掀起课堂的一个小高潮。
学生总结,教师板书,以及注意引导学生理解“同一个整式”的含义。
3、类比等式的性质2,使学生发现问题:不等式是否有类似的性质
不等式的性质2,3是这一节的重点、难点,在这个知识点的处理上,完全放手给学生,让学生自己发现,不等号没变,在什么情况下不变?不等号发生了改变,在什么情况下发生了改变?让学生自己的思维发生碰撞,再套用乘以或除以一个数已经不能满足需要了,因此,必须分成正数和负数两种情况。这种分类不是老师硬塞给学生的,而是水到渠成的。让学生再举几例试试,发现有没有类似的结论。
【教法说明】为了突破学生对不等式性质3理解的困难,根据学生的认知规律采取化抽象为具体的方法来设计教学过程。为了体现以学生
为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即观察猜测---直观验证---得出性质,突出时间、结果和体验学生有效学习的三个重要指标,教学过程应该成为学生的一种愉悦的情绪生活和积极的情感体验。基于此,改变以往给学生画好框架,让学生跟着老师的思路走的教学模式,大胆放手给学生,从而培养学生的能力。这种方式能再次掀起小高潮。让学生各有所获,从不懂到懂,从少知到多知,从不会到会,从不能到能。学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.
师生活动:由学生概括总结不等式的性质2,3,同时教师板书.
4、例题讲解,探究新知
例1将下列不等式化成“xa”或“xa”的形式
(1)x-5-1(2)-2x3
解:(1)根据不等式的基本性质1,两边都加上5,得x-1+5即x4
(2)根据不等式的基本性质3,两边都除以-2,得X-3/2
【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.
【设计意图】应用性质精讲精练,对不等式进行变形,加强对不等式性质的理解,规范书写格式
例2:对习题1进行适当的改编:已知ab,填空并连线:
(1)a-3____b-3根据不等式的性质1
(2)6a____6b根据不等式的性质2
(3)-a_____-b根据不等式的性质3
(4)a-b____0
教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.
注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.
【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力
5、小试牛刀:断正误,正确的打“√”,错误的打“×”
①∵∴( ) ②∵∴( )
③∵∴( ) ④若,则∴,( )
学生活动:一名学生说出答案,其他学生判断正误.
答案:①√ ②× ③√ ④×
【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错
6、拓展思维,培养能力
比较2a与a的大小
【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。
7、分层布置作业必做题:b,填空并连线:(1)a-3____b-3根据不等式的性质1
(2)6a____6b根据不等式的性质2
(3)-a_____-b根据不等式的性质3
(4)a-b____0
教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.
【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力5、小试牛刀:断正误,正确的打“√”,错误的打“×”①∵∴( ) ②∵∴( )③∵∴( ) ④若,则∴,( )学生活动:一名学生说出答案,其他学生判断正误.答案:①√ ②× ③√ ④×
【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错6、拓展思维,培养能力比较2a与a的大小
【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。
七年级数学说课稿5
今天我说课的内容是:人教实验版教材《义务教育课程标准实验教科书》七年级(上),第一章有理数第四节有理数的除法第二课时p36页例9。
一、说教材
1、教材的地位和作用
本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。
2、教育目标
(1)知识与能力
①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。
②培养学生的观察能力、分析能力和运算能力。
(2)过程与方法
培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。
(3)情感态度价值观
通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。
3、教学重点和难点
重点和难点是如何利用有理数列式解决实际问题及正确而
合理地进行计算。
二、说教法
鉴于七年级学生的'年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。
三、说学法指导
本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。
四、师生互动活动设计
教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。
五、说教学程序
(课本36页)例9:某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年盈亏情况如何?
师生共析:认真审题,观察、分析本题的问题共同回答以下问题:
1、年哪几个月是亏损的?哪几个月是的盈利的?
2、各月亏损与盈利情况又如何?
3、如果盈利记为“”,亏损记为“-”,那么全年亏损多少?盈利多少?
4、你能将亏损情况与盈利情况用算式列出来吗?
5、通过算式你能说出这个公司去年盈亏情况如何吗?
【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行)再由学生自主完成运算。
【教法说明】:此题一方面可以复习加()法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。
(三)归纳小结
今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。
六、说板书设计
板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。
七年级数学说课稿6
一、教材分析
(一)教材地位:这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标:
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.
情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的.办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.
三、教学过程设计
1.创设情境,提出问题
2.实验操作,模型构建
3.回归生活,应用新知
4.知识拓展,巩固深化
5.感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标
设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.
二、实验操作模型构建
1.等腰直角三角形(数格子)2.一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.
通过以上实验归纳总结勾股定理.
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律.
三.回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.
四、知识拓展巩固深化
基础题,情境题,探索题.
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.
基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.
情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.
五、感悟收获布置作业:
这节课你的收获是什么?
作业:
1、课本习题2.1
2、搜集有关勾股定理证明的资料.
板书设计探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
设计说明:
1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.
2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.
七年级数学说课稿7
教材分析:
本节课选自新人教版数学七年级上册§2、2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
教学目标:
1、知识目标:
(1)理解、掌握同类项的概念,会识别同类项。
(2)掌握合并同类项法则,能进行同类项的合并。
(3)通过观察、比较、交流等活动,认识同类项,了解数学中分类的思想。
2、能力目标:
(1)能在多项式中准确判断出同类项。
(2)通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的合并,体验化繁为简的数学思想。
3、过程与方法:组织学生参与学习、讨论,在合作探究活动中获取知识。
4、情感态度与价值观:
激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
教学重点、难点:
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
教学策略:
基于本节课内容的特点和七年级学生的心理特征,我在教学中选择引导、探究式的学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在探究、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。
教学过程:
一、温故而知新:
1、什么叫单项式和多项式?
2、什么叫多项式的项?指出多项式—x23x—5中的项。
3、学过哪些运算律?
这节课我们就运用以前掌握的知识来学习2、2整式加减——合并同类项。板书课题,展示学习目标
二、学习新课
1、理解同类项概念
(1)议一议:8n—7a2b3ab22a2b 6xy5n,—3xy—b2a
8n和5n,3ab2和—b2a,6xy和—3xy,—7a2b和2a2b
思考:
归为同类需要有什么共同的特征?(引导学生理解同类项的定义)
概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
注意:
①同类项与系数无关,与字母的排列顺序也无关
②几个常数项也是同类项。
⑵辨一辨
下列各组中的两项是不是同类项?为什么?
①2a与2ab②2a2b与2ab2③3x2y与—x2y
④ab与3ba⑤5与b3⑥—2.1与
⑶知识升华
①3xky与—x2y是同类项,那么k=
②若3xm—5y2与x3yn是同类项,则mn=
2、合并同类项
合并同类项:把同类项合并成一项就叫做合并同类项
(1)利用乘法分配律,完成下列各题。
①12×238×2
②12×(—3)38×(—3)
2、根据(1)推想
①2a3a=(23)a=5a
②5ab—3ab=(5—3)ab=2ab
③—3a—2b不是同类项,不能合并。
④2a2b—3a2b0、5a2b8
=(2—30、5)a2b8
=—0.5a2b8
引导学生总结合并同类项法则:系数相加,所得结果作为系数,字母和字母指数不变,不是同类项不能合并。
3、知识应用
(1)合作探究:化简多项式6xy—10x2—5yx7x25x
(2)独立完成
例1合并下列各式的同类项,思考合并同类项步骤。
①xy2—xy2②—3x2y2x2y3y2x—2xy2③4a23b22ab—4a2—4b2
4、归纳合并同类项步骤:
a找出同类项b加法交换律、结合律、乘法分配律c合并
注意:
①用画线的`方法标出各多项式中的同类项,以减少运算的错误。
②合理运用运算律。
③两个同类项的系数互为相反数时,合并同类项,结果为零。
三、练习
1、瞧一瞧
(1)3a2b=5ab(错)
(2)5y2—2y2=3(错)
(3)2ab—2ba=0(对)
(4)3x2y—5xy2=—2x2y(错)
2、请你完成
(1)3x—8x—9x
(2)5a22ab—4a2—4ab
(3)2x—7y—5x11y—1
3、知识延伸
已知x3my3与—x6yn—1是同类项,求m、n的值。
4、提高练习:
(1)在6xy—3x2—4x2y—5yx2x2中没有同类项的项是______
(2)若5xy2axy2=—2xy2,则a=___;
(3)—4xay与x2yb的和是单项式,则ab=____。
(4)若多项式a22kab与b2—6ab的和不含ab项,则k=____、
四、课堂小结:通过本节课的学习你学到了什么?
蓦然回首:
1、同类项的定义
2、同类项的判断
3、合并同类项法则
五、作业
必做题:
1、在下列代数式中,指出哪些是同类项。
2x2,0,—3x,—x2y,(xy)2,xy2,x2y,6x,-x2y,0、5,—x2,2(xy)2、
2、合并同类项
①3y2y ②3b-3a31a3-2b
③2y6y2xy-5 ④6mn4m2n—3mn5mn2
3、填充:
(1)在()内填上相应字母,使得2()3()2与5x2y3是同类项;
(2)若x3ym和xny2是同类项,则mn=;
(3)若(n—3)x2yz和x2yz是同类项,则n;
选做题:
五个连续整数,设其中最小的数为n。
(1)写出这五个数的和。
(2)这五个数各是什么数时,它们的和等于300。
六、板书设计:
2、2整式加减
——合并同类项
一、同类项:字母相同指数也相同
几个常数项也是同类项。
二、合并同类项
三、合并同类项法则
四、步骤
七、教学反思
教学方法是师生共同讨论及探究式的教学方法。在课堂上利用投影片,给出的例子、习题节约了书写时间,把多余时间交给学生,让学生充分体会到自己的主体性和老师的主导性。在学生思考问题中对于符号问题容易出现误差,因此对符号问题生动化,活泼化,不只是局限于它是数学符号,使学生印象更深刻。
教师的课堂组织显得尤为重要,教师的主导作用得到较好的发挥。学生是课堂的主人,学生的主体地位得到较好地保证。尊重学生在解决问题的过程中所表现出的不同水平。
注重知识的发展过程,渗透数学文化,但不能忽视学生基础知识的学习与基本技能的培养。
八、课评课记录
一、赵晶:引入自然,善于创设情景,能有效的激发学生学习的兴趣和欲望。学习环境宽松,民主,师生情感交流融洽和谐。
二、崔丽君:教学环节设计合理,衔接自然,逻辑性强。
三、刘英杰:教学方法灵活多样,学法指导及时有效,评价得体,激励恰当。
四、史颖:体现自主合作,探究学习方式,学生独立学习与交流讨论时间充分,教态自然语言表达准确简练,板书布局合理。
五、王晶:能孰料运用数学教具和现代化信息技术手段进行辅助教学,突出教师主作用和学生学习的主体地位。
六、申佳美:教学内容适量,知识传授准确,突出重点,突破难点。
七年级数学说课稿8
各位领导、老师:您们好!
非常高兴能有机会向在座的领导、老师学习,不当之处,请多指教。我说课的题目《是三角形的内角》。
一、教材分析
1、说教材
《三角形的内角》是九年制义务教育人教版七年级下册第七章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过拼图说出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力..
2、教学目标和要求
根据新课标的要求及七年级学生的认知水平,我制定本节课的教学目标如下:
⑴了解三角形的内角
⑵会用平行线的性质与平角的定义证明三角形的内角和等于180°
⑶学会解决与求角有关的实际问题
⑷初步培养学生的说理能力
3、教学的重点与难点
重点:了解三角形的内角和性质,学会解决简单的实际问题。
难点:证明三角形的内角和等于180°。
二、说教学理念
培养学生的`合作探究精神,自主学习、创新精神是新课程标准的重要理念。课堂教学中渗透了数学的转化思想,数型结合思想,体现新课程标准中的知识与能力、情感与态度,过程与方法的三统一。
三、说教法
本节课结合七年级学生的理解能力、思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化,在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是用三种拼图法得出三角形内角和是180°的结论,教师采用点拨的方法,启发学生主动思考,尝试用多种方法来证明这个结论,使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解,一题多法的创新能力,使课本知识成为学生自己的知识。
四、说学法
课堂中逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
五、说教学过程
(一)创设情境、激发情趣
爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过一个趣味性问题,激发学生的学习热情。在一个直角三角形里住着三个内角,老二对老大说:“你凭什么度数最大,我也要和你一样大。”老大说:“这是不可能的,否则我们这个家再也围不起来了…”。设置悬念让学生评理说理,为三兄弟排忧解难,自然导入三角形内角和的学习。
(二)动手操作、初步感知
提问:三角形内角和是多少?由于学生在小学学过这样的知识,所以很轻松地就可以答出。然后让学生分小组讨论:有什么办法可以验证得出这样的结论。学生会提出度量拼图的方法,然后让每个学生画出一个三角形,并将它的内角剪下,试着拼拼看。通过小组合作交流有几种拼合方法。最后教师总结共有三种拼图方法。让学生从丰富的拼图活动中发展思维的灵活性、创造性,为下一环节“说理”证明作好准备,使学生体会到数学来源于实践,同时对新知识的学习有了期待。
(三)实践说明、深入新知
教是为学服务的,教的最终目的是为了不教,教给学生学习方法,证明方法比单纯教学生证明更有效。教师设问:从刚才拼角的过程中,你能说出证明:“三角形内角和等于180°”这个结论的正确方法吗?⑴把你的想法与同伴交流。⑵各小组派代表展示说理方法。⑶请同学们归纳上述各种不同的方法。教师从中挑选四种方法进行讲解。通过小组讨论,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力,培养学生的一题多思,一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透了初中阶段一个重要数学思想―――转化思想,为学好初中数学打下坚实的基础。
(四)巩固练习、拓展新知 教育论文在线
通过习题巩固三角形内角和知识,培养学生思维的广阔性,通过讨论一个三角形中最多有几个直角、钝角,至少有几个锐角,为学生提供充分从事数学活动的时间、空间,让学生在自主探索、合作交流的氛围中,有机会分享同学的想法,培养了学生之间良好的人际关系,拓展了三角形内角和是180°的知识外延。
(五)启发诱导、实际运用
出示例题,并提出了两个问题:1、请你结合图形解释一下题中的方位角有那几个。2、角ACB是哪个三角形的内角?通过例题的解析,让学生体会分析问题的基本方法,渗透初中阶段另一数学思想―――数形结合思想,使学生巩固概念加深认识,初步具备解决相关问题的能力,然后让小组交流不同的解法,培养学生思维的广阔的空间。
(六)反馈矫正、注重参与
通过课堂练习,强化学生对这节课的掌握,为此我设计了两道习题,第一道是开放题,这道题有助于帮助学生解决生活中的实际问题,可以激发学生学习数学的热情。第二道题采取了客观题的形式,难度中等,使学生掌握概念并能简单运用,可以提高学生的说理能力,可挑选中等成绩的学生起立回答。便于了解学生掌握的总体情况。
六、课堂小结
采用用先让学生归纳补充,然后教师再补充的方式进行:⑴这节课我们学了什么知识?⑵你有什么收获?充分发挥学生的主体意识,培养学生的语言概括能力。
七、板书设计(出示课件)共分了三大块:一块是三角形的拼图方法;
第二块是用四种方法证明三角形内角和是180第三块是例题解析。
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主探究,合作学习来主动发现,实现师生互动。通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好 的数学素养和学习习惯,让学生学会学习,学会生活才能使自己真正成为一名受学生欢迎的好老师。
以上是我对本节课的设想,不足之处请批评指正。
七年级数学说课稿9
一、说教材的地位和作用
《 一元一次不等式》是人教版教材七年级第九章第二节内容,在此之前,学生们已经学习了不等式基本性质, 不等式的解集等知识 ,这为过渡到本节内容的学习起到了铺垫的作用。同时也是学生以后顺利学习一元一次不等式组有关内容的基础.因此,本节内容在本章中具有不容忽视的重要的地位。
二、说教学目标
根据本教材的结构和内容分析,结合着七年级学生他们的认知结构及其心理特征,我制定了以下的教学目标:
1、 知识与技能:掌握一元一次不等式的概念且要会解一元一次不等式,能在数轴上表示一元一次不等式的解集.
2、过程与方法:通过学生观察,推理,类比,分析.得到得到一元一次不等式的概念,用数形结合的方法理解一元一次不等式的解集.
3、情感与态度:初步认识一元一次不等式的应用价值,发展学生分析问题,解决问题的能力;初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验。
三、说教学的重、难点
本着课程标准,在吃透教材基础上,我确定了以下的教学重点和难点。
教学重点:掌握一元一次不等式的概念,会解一元一次不等式,并能将解集在数轴上表示出来。
重点的依据:“人人学有价值的数学”。因此,我确定这节课的重难点是看两方面:一是教学内容与教学目标;二是学生的认识水平。这节课的意图是让学生认识一元一次不等式,会解一元一次不等式,因此,这节课的重点为掌握一元一次不等式的概念,会解一元一次不等式,并能将解集在数轴上表示出来。
教学难点: 一元一次不等式的解法
难点的依据:不等式与方程一样是千变万化的,因此不等式的解法也不是一层不变的,如何类比一元一次方程的解法来解一元一次不等式是本节的一个难点。
为了讲清教材的重、难点,使学生能够达到本节内容设定的教学目标,我再从教法和学法上谈谈:
四、 说教法
在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。我们在以师生既为主体,又为客体的原则下,展现获取理论知识、解决实际问题方法的思维过程。
学生知识现状分析: 七年级上学期学生已经掌握一元一次方程的解法,上一节课学生已初步会进行不等式的简单变形,但是在运用不等式性质3时容易出现错误。我主要采取学生活动的教学方法,让学生真正的参与活动,而且在活动中得到认识和体验,产生践行的愿望。培养学生将课堂教学和自己的行动结合起来,充分引导学生全面的看待发生在身边的现象,发展思辩能力,注重学生的心理状况。当然教师自身也是非常重要的教学资源。教师本人应该通过课堂教学感染和激励学生,充分调动起学生参与活动的积极性,激发学生对解决实际问题的渴望,并且要培养学生以理论联系实际的能力,从而达到最佳的教学效果。同时也体现了课改的精神。
基于本节课内容的特点,我主要采用了以下的教学方法:
1、直观演示法:
利用图片的投影等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。
2、活动探究法
引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自学能力、思维能力、活动组织能力。
3、集体讨论法
针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神。
五、说学法
让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为真正的学习的主人。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:思考评价法、分析归纳法、自主探究法、总结反思法。
六、教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
导入新课:(3—5分钟)
在这节课开始之初先出示两个一元一次方程,要求学生在回忆一元一次方程的基础上解出这两个方程并要求学生说出每一步的依据。这样为后面学习一元一次不等式的概念,及类比其解法埋下伏笔。在这之后,要求学生说出不等式的3条基本性质,增强课程连续性的情况下,引导学生进入本课知识的学习。
2.创设情境 导入新知
教师出示一些简单的不等式,要求学生观察分析,分组讨论这些不等式的共同特点。学生归纳总结出共同特点后,要求学生类比一元一次方程给这些不等式取名字。
通过观察,猜想,设置悬念,激发学生强烈的求知欲,要求学生类比推理,归纳总结,发展学生分析问题,解决问题的能力。
3.类比推理 深化新知
在学生识别了什么是一元一次不等式后,出示例1(1):2(1+x)<3此不等式为一般不等式,要求学生先自主探索,尝试用解一元一次方程的解法来解这个不等式.教师在讲解时可以要求学生说出每一步的依据,让学生不等式的熟练掌握一般一元一次不等式的解法的同时理解一元一次不等式解法的真谛,同时为后面解复杂一元一次不等式做铺垫.出示例1(2). 此不等式相对于(1)的不等式而言是具有分母的的不等式,可以让学生先独立思考后用化归的思想将不等式化为一般不等式来解这个不等式.出示这两个不等式代表的是两种不等式的解法.教师在讲解的时候一定要给学生分析清楚,如何用划归的思想将不等式化为一般的'一元一次不等式然后再求解.熟练掌握一元一次不等式的解法后,让学生运用上节课所学的知识在数轴上将其解集表示出来,利用数形结合,始解集更加形象直观.此环节的设置培养学生团结合作,类比推理的能力,让学生养成勤动笔,勤动脑的习惯.积累学生分析问题,解决问题的能力.
4.运用新知 形成能力
为了巩固本节课的教学效果,反馈学生学习的情况,本着学以致用的原则,设置了四道解不等式的练习题:
(1)5x+15>4x-1 (2) 2(x+5)>3(x-5)
(3) (4)
这四道题分三个类型,让学生熟练掌握刚学的知识.
根据教材的特点,学生的实际、教师的特长,以及教学设备的情况,我选择了多媒体的教学手段。这些教学手段的运用可以使抽象的知识具体化,枯燥的知识生动化,乏味的知识兴趣化。重视教材中的疑问,适当对题目进行引申,使它的作用更加突出,有利于学生对知识的串联、积累、加工,从而达到举一反三的效果。
课堂小结,强化认识。(3—5分钟)
课堂小结,可以把课堂传授的知识尽快地转化为学生的素质;简单扼要的课堂小结,可使学生更深刻地理解不等式在实际生活中的应用,并且逐渐地培养学生具有良好的个性。
4、板书设计
直观、系统的板书设计,还及时地体现教材中的知识点,以便于学生能够理解掌握
板书
1(1):2(1+x)<3 (2)
练习:
(1)5x+15>4x-1 (2) 2(x+5)>3(x-5) (3) (4)
5、布置作业。在学习了本节课的知识内容后,为了让每一个学生及时巩固这一节的内容,同时为下一课时做准备,教师要有区别的布置作业,这样做既可以使学生掌握基础知识,又可以使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。
课堂作业:126页1(1)(2)(3)(5)
(四). 课后反思
本节课的教学过程中,本着重视过程,主动建构,突出应用的原则,从学生已有认知出发,让学生主动地建构其新的认知结构,提升学生的智能,让学生形成良好的思维习惯.
七年级数学说课稿10
一、教材分析
(一)教材的地位和作用
方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础。方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材。本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭。
(二)教学内容
“从算式到方程”新教材与原教材的显著区别:方程这一部分内容不是按照由定义到解法最后讲应用的纯数学体系编排,而是首先从实际问题出发,通过比较算术方法与方程求解的区别,体会方程的优越性,让学生认识到从算式到方程是数学的一大进步。然后再通过具体实际问题所列方程,介绍方程等概念。新教材的编写更加体现了数学的应用价值。
(三)教学重点难点
由于学生在小学阶段已习惯用算术方法解决实际问题,对列方程不太熟练,为了防止学生仍停留在列算式解题的低层上,所以本节重点确定为:让学生在讨论问题、解决问题的过程中,比较列算式与列方程在分析数量关系上的区别及列方程时相等关系的建立。而本节中学生可能感到困难的仍是实际问题相等关系的建立。
二、目标分析
依据课程标准的要求,确定以下目标:
(一)知识与技能目标
1。了解方程等基本概念。
2。会根据具体问题中的数量关系列出方程。
(二)过程与方法目标
经历从具体问题中的数量相等关系列出方程的过程,体会并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想。
(三)情感目标
让学生进一步认识到方程与现实世界的密切关系,感受数学的价值。培养学生获取信息,分析问题,处理问题的能力。
三、教法与学法分析
根据本节内容与现实生活联系较紧密的特点,教学中选取学生熟悉的、感兴趣的背景材料,充分调动学生的学习热情。并恰当设计各种问题,让学生在教师的引导下,通过小组讨论、相互交流、动手操作、自主探索等活动,获得知识,积累经验,体验成功,积极推行自主学习、合作学习、探究学习等新的学习方式,努力完成教师和学生在教与学活动中角色的转变。
四、教学过程分析
教学目标①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程
②初步具有解方程中的化归意识;
③培养言必有据的思维能力和良好的思维品质。
教学重点用等式的性质解方程。
知识难点需要两次运用等式的性质,并且有一定的思维顺序。
教学过程(师生活动)设计理念
复习引入解下列方程:
(1)x+7=1.2;
(2)在学生解答后的讲评中围绕两个问题:
①每一步的依据分别是什么?
②求方程的解就是把方程化成什么形式?
这节课继续学习用等式的性质解一元一次方程。由于这一课时也是学习用等式的性质解方程,所以通过复习来引入比较自然。
探究新知对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?
例1利用等式的性质解方程:
0.5x-x=3.4(2)
先让学生对第(1)题进行尝试,然后教师进行引导:
①要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?
②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?
然后给出解答:
解:两边减0.5,得0.5-x-0.5=3.4-0.5
化简,得
-x=-2.9
两边同乘-1,得
x=-2.9
小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化。
你能用这种方法解第(2)题吗?
在学生解答后再点评。
解后反思:
①第(2)题能否先在方程的两边同乘“一3”?
②比较这两种方法,你认为哪一种方法更好?为什么?
允许学生在讨论后再回答。
例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米。现已做了80套成人服装,用余下的布还可以做几套儿童服装?
在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗?
解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5米,根据题意,得
80x×3.5+1.5x=355
化简,得
280+1.5x=355
两边减280,得
280+1.5x-280=355-280
化简,得
1.5x=75
两边同除以1.5,得x=50
答:用余下的布还可以做50套儿童服装。
解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。
问题:我们如何才能判别求出的答案50是否正确?
在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355
方程的左右两边相等,所以x=50是方程的解。
你能检验一下x=-27是不是方程的解吗?不同层次的学生经过尝试就会有不同的收获:一部分学生能独立解决,一部分学生虽不能解答,但经过老师的引导后,也能受到启发,这比纯粹的老师讲解更能激发学生的积级性。
这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的“检验”更加自然。
解题的格式现在不一定要学生严格掌握。
课堂练习①教科书第73页练习第(3)(4)题。
②小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)
建议:采用小组竞赛的方法进行评议
小结与作业
课堂小结建议:①先让学生进行归纳、补充。主要围绕以下几个方面:
(1)这节课学习的内容。
(2)我有哪些收获?
(3)我应该注意什么问题?
②教师对学生的学习情况进行评价。
③思考题用等式的性质求x:-2x=-5x+7引发竞争意识,提高自我评价和自我表现的机会,以达到激发兴趣,巩固知识的目的。评价包括对学生个人、小组,对学生的`学习态度、情感投入及学习的效果方面等。
本课作业①必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:①3+4x=17;②4-=3
②选做题:教科书第73页第4(3)题,第74页第10题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本设计从新课的引人、例题的处理(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点。
2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师“灌输”的“容器”,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识。新课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式。本设计在这方面也有较好的体现。
3、为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线。对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的又一特点。本设计充分体现了这一特点。
七年级数学说课稿11
●教材分析
1、出处:今天我说的课题是北师大版七年级上册《字母代表数复习课》的内容。
2、地位与作用:通过对字母代表数复习的学习,学生将对字母代表数有进一步的认识和理解,为后继方程应用题的学习奠定了坚实的基础.
●目标分析
一、教学目标
1、情感目标:在复习活动中让学生体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生成功学习数学的自信心和创新意识。
2、能力目标:培养学生归纳、总结等自我复习能力及团队合作精神,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。
3、知识目标:
1梳理所学知识,形成一定的体系,并逐步掌握用代数式表达数量关系或变化规律的方法;能解释一些简单代数式的实际背景或几何意义,体会数学与现实世界的联系;经历探索事物之间的数量关系,并用字母与代数式表示,建立初步符号感,发展抽象思维.
二、重点、难点
重点:用字母把数和数量关系简明的表示出来,并进行化简、求值;
难点:探索具体事物之间的关系或变化规律,并用符号进行表示
●教法分析与教学设计
充分确立学生在教学中的主体地位,贯彻师生合作的.精神,实现民主教学。为此我采用了“四环达标探究教学法”。基本流程:创设情景————合作探究——个性展示——反馈拓展——课堂小结——布置作业。
教学流程
(一)创设情景、导入课题
谈话激趣:今天很高兴和大家一起学习(和同学们握手),如果我和教室里的所有人握手,设包括我在内一共有n人,共需要握手多少次?如果两两相互握手,一共握手多少次?
(意图:本节课因为是复习课,比较枯燥,必须调动学生的情绪。首先我用一个情景引入,让学生明确本节课的目标,从而出示用字母表示数的标题。)
好了今天我们一起就来复习《字母表示数》。
(二)自主学习
填空
1、某工厂一月份加工产品a件,二月份加工的产品数比一月份加工的产品数的3倍少5件,则该厂两个月共加工产品______________件。
2、在a2b与-5ab2,-8m2与9m2,23与32, ab2与b2a中是同类项的是____________________________。
3、若-2xayb+2与3x2y6是同类项,则(-m) n=________________。
4、三个连续整数,中间一个是n,则这三个整数的和是___________________。
5、化简m-[n-2m-(m-n)]的结果是___________________。
6、代数式3a2-b2与a2+b2的差是_______________________。
7、-x-6=-( ),-{-[x-(y-z)]}=_________________。
8、若a+b=1,则6-a-b=_____________。(这个题体现的整体思想)
(意图:用题为载体呈现所学的相关离散性的知识。处理方式:让学生自主完成,在完成题后,然后提炼出知识点、相关方法、能力等写在黑板的右上与后面题提炼出的东西形成一个整体,从而形成结构)
(三)合作探究
1.同学们可能和我一样经常打的,已知出租车收费标准是:起步价3元,可乘3千米;超过3千米,每千米价1.2元。
1、老师坐了5千米,需要多少钱?(5.4)
2、若我乘坐了x(x>3)千米的路程,则我应支付的费用是多少?
3+1.2(x-3)=1.2x-0.6
3、若我支付了9元车费,你能算出我坐了多远吗?8千米
(意图:我用坐出租车的生活实例,将数字运算过渡到列代数式、求解,让学生初步感受字母表示数的优越性。因为本题的后两小问有点难度,通过小组合作把它做出来。)
2.找规律下列每个图形都是若干个棋子围成的正方形图案,图案每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案棋子总数为S,按下图的排列规律推断,S与n之间的关系可以用式子______________来表示。
n=2 n=3 n=4 n=5
S=4 S=8 S=12 S=16
(意图:本题先从用特殊的数字入手,进而让学生发现这样的等式无穷多,产生对字母的需求,想到可以用字母表示这个规律,由特殊到一般,初步体验字母在规律中的应用。值得注意的是,学生可能出现多个答案,也可能写出左边后直接去括号,要引导学生进行辨别。)
3、观察下列图形
填表:(当梯形的个数为n,用代数式表示火柴根数时,需暴露学生思维,小结学生的各种方法)
梯形个数1 2 3 … n
火柴根数
(下面设计了三个问题,考虑的是让学生熟悉运算顺序,同时通过求值可检验规律的正确性)
(1)、当梯形的个数是n时,火柴的根数是多少?
(2)、当n=20xx时,结果是多少?
(3)、火柴根数可以是20xx吗?
(四)个性展示
意图:以上三个题由易到难,规律也各不相同,让学生意识到生活中有很多有趣的数学问题。然后在此进行总结,字母可以表示数,可以表示规律,还可以表示等量关系,从而进行能力方法迁移,这样即能训练巩固又可以过渡到新问题,并把试题的形式变丰富。在合作完之后,让小组长到讲台上来,把他们小组的见解讲给其他学生听,其他小组成员可以适当补充,充分体现学生自主的课堂)
(五)反馈拓展
提升训练:
按下面方式摆放桌椅:
图1
(1)1张桌子配6张椅子,2张桌子配把张椅子
(2)按照上面桌椅的摆放方式,寻找到的规律来完成下面表格
桌子数1 2 3 4 5 6 7 … n
椅子数
(3)某同学生日Party,在一正方形餐厅中安排40人同时就餐(要求没有剩余椅子),怎样摆放呢?
如果用2张拼成1张大桌子,需拼张大桌子,共需要张小桌子;
如果用3张拼成1张大桌子和6张拼成1张大桌子,共需要张小桌子;
还有别的拼法吗?
(4)若桌椅按下列方式摆放,填写下表:
图2
桌子数1 2 3 4 5 6 … n
椅子数…
如果也要求坐40人(没有剩余椅子),又可以怎样拼呢?
(5)如果你当经理要安排40人进餐,你会选择哪种餐桌的摆法?画图并说理(要求没有剩余的椅子,可以从图1或图2中选择一种摆放方式,也可以两种图并用)
(意图:本例通过教材中的题进行延伸,是本节课挖掘的重点,设置了5个问题,层层递进,由特殊到一般先找出规律,然后将规律运用到实际生活中,并根据2n+4和4n+2进行优化选择,给学生思维空间,突出开放性)
(六)课堂小结
1、这一节课我们一起学习了哪些知识?
2、对这些内容你有什么体会,请与你的同伴交流.
(七)布置作业p129 T 1、2、3
七年级数学说课稿12
我是来自××中学的×××。我的说课稿内容是合并同类项。下面我就教 材分析、教法、学法、教学程序、教学评价五个方面进行设计说明。
一、教材分析
㈠地位、作用
本节课在学习了单项式、多项式及其有关概念之后,以同类项的概念、合并同类项的法则及其运用为教学内容。合并同类项是整式运算的基础,而整式的运算对学好初中数学有着十分重要的作用。
㈡教学目标
⒈知识目标:①理解同类项的概念,并能辨别同类项;② 掌握合并同类项的法则,并能熟练运用。
⒉能力目标:①通过创设教学情景,使学生积极主动地参与到知识的产生过程中,培养学生的归纳、抽象概括能力;②通过巩固练习,增强学生运用数学的意识,提高学生的辨别能力和计算能力。
⒊情感目标:①让学生学会在独立思考的基础上积极参与数学问题的讨论,享受通过运用知识解决问题的成功体验,增强学好数学的信心;②通过教学,使学生体验“由特殊到 一般、再由一般到特殊”这一认识规律,接受辩证唯物主义认识论的教育。
㈢重点、难点
重点是同类项的概念、合并同类项的法则及其运用法则进行计算。
难点是同类项定义的归纳、概括。
二、教法
根据本节教材内容和学生的实际水平,为更有效地突出重点、突破难点,按照学生的认识规律,遵循“教师为主导、学生为主体、训练为主线”的指导思想,我将采用探究发现法、多媒体辅助教学等方法,教学中精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,并适时运用多媒体演示,激发学生探索知识的欲望,以此来达到他们对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养学生的思维能力。
三、学法
根据学法自由性原则,让学生在教师创设的问 题情景下,通过教师的启发点拨,在学生的积极思考努力下,自由参与知识的发生、发展、发现的过程,使学生掌握知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、教学程序
㈠新课引入
新课的开始,是课堂教学的一个重要环节。如果在新课伊始能吸引学生的注意力,引起他们浓厚的兴趣,激发强烈的求知欲望,就可以使学生愉快而主动地去接受新知识,从而取得课堂教学的理想效果。所以一开始上课,我用大屏幕显示一道实际生活中的问题,学生通过探究讨论解决问题,由此导出本节课的主题,同时为学习新课做好铺垫。
㈡探索新知
本节课第一个重要环节是同类项的概念,既是重点也是难点。为突出重点,突破难点,我设计了活动1:学生仔细观察、独立思考后,分组讨论,互相交流,然后每组派一名代表发言,概括这两组单项式的.特征。教师倾 听学生交流,在学生概括出上述几组单项式的特征之后,提出同类项的概念,再由学生概括出同类项 的定义。由教师补充:几个常数项也是同类项。这样,学生直接参与到同类项概念产生的过程,不仅能够有效地促使学生理解同类项的含义,而且能使学生体验获得成功的喜悦,同时培养和提高学生归纳、抽象概括的能力。
为巩固同类项的概念,我设计了一道判断题,由学生一个个单独完成,并简单阐述理由,让学生充分发表意见,关注每一个学生。通过这个活动加深对同类项概念的理解,为后面合并同类项打好基础。
另外还设计一道开放性题目,让学生自己动手写出两组 同类项,组内交流写出的项是否符合要求,教师深入学生中间,参与指导,帮助加深理解同类项 的含义,扩展学生的思维空间,培养学生的抽象思维能力和发散思维能力。
第二个重要环节是合并同类项的法则。通过设计问题串,引导学生获取新知。问题1,实际上是引例中的两个等式,通过学生观察,容易得出结论,左边两项系数之和等于右边的系数,明确同类项相加成为一项的方法,使学生对合并同类项有个初步认识。为克服学生对这个认识可能存在的疑点,我设计了问题2,学生展开讨论,教师深入学生中间,参与学生讨论,指导学生探究,验证上述认识的正确性,体现了获取知识不仅要有观察、归纳、猜想过程,还必须有验证过程。打消疑点之后,提出问题3,有上面两个问题做基础,学生极易回答这个问题,教 师抓住时机,让学生总结概括合并同类项的法则,再次培 养和提高学生的归纳概括能力。
㈢巩固新知
在这个环节中我设计了三道题。
第一题:学生判断、理解只有同类项 才能合并,教师加以指导。本次活动中,教师应重点关注①学生对同类项的概念是否混淆不清,能否正确辨别问题。②是否在正确辨别 后只重视系数而忽略了字母和字母的指数。③对一些同类项的变式能否正确的辨别。通过这道练习,培养学生运用知识的能力,进一步巩固同类项的含义和合并同类项的方法,为本节课的应用做好铺垫。
第二题:是一道实际应用题。学生小组讨论、交流,首先明确要解决什么问题,并围绕这个问题开展探究,寻找解决问题的方法。教师引导学生观察,帮助学生展示大小两个长方体纸盒的模型,并深入小组,倾听学生交流,指导学生探究。学生在掌握同类项的概念和合并同类项的法则后,通过解决一个实际问题,体现了“学数学、用数学”的基本理念,并让学生体会到数学是解决实际问题的重要工具,增强应用数学的意识。
第三题:把学生分为两组,一组直接代入计算,另一组先化简再代入计算。通过比较让学生充分认识新知识的优越性,能够使学生积极主动运用新知识解决问题。
㈣课堂小结
学生分组讨论、归纳,学生代表发言。教师倾听, 并对学生发言给予充分鼓励和肯定,调动学生主动参与的意识,让学生感受到集体合作的重要性。
㈤布置作业
为减轻学生的课业负担,从课本中调选了两道题。第一题是合并同类项,既能巩固同类项的概念,又可利用合并同类项的法则进行计算,起到巩固新课的目的。第二题是实际应用题,进一步培养学生运用所学知识解决实际问题的能力,增强运用数学意识。学生通过独立思考,完成课后作业,老师批改,做好批改记录,及时反馈学生学习的效果,便于进行课堂教学优化。
㈥板书设计
体现了新知识的产生过程,便于学生理解掌握知识,并加深记忆。
五、教学评价
整个教学过程遵循“由特殊到一般、再由一般到特殊”这一认识规律,教师始终是学生 学习活动的引导者、激励者、协调者、服务者,给学生留出足够的活动时间与空间,设计的各个教学环节有利于引发学生的学习兴趣,有利于学生由浅入深、循序渐进地掌握知识,形成能力,获得技巧,使他们在主动探索发现之中建构自己的知识,形成素质。
七年级数学说课稿13
一 说教材
《一元一次不等式》是人教版必修教材第 章第 课时的教学内容。在此之前,学生们已经学习了一元一次方程这为过渡到本课题的学习起到了铺垫的作用。而本课题的理论、知识是学好以后课题的基础,它在整个教材中起着承上启下的作用。
二 说教学目标
根据本教材的结构和教学内容分析,结合七年级学生的认知结构和心理特点,我将制定以下三个教学目标:
1. 了解一元一次不等式的概念;会解一元一次不等式。
2. 通过学习对一元一次不等式的概念及解一元一次不等式的探究过程,体会类比数学思想方法。
3. 培养学生理论联系实际的思维能力及总结概括能。
三 说教学重、难点
根据教学大纲和新课程标准的要求我认为本节课的教学重点是让学生掌握一元一次方程的概念,并会类比解一元一次方程的`步骤解一元一次不等式。
本节课有两个教学难点:把不等式中的未知数化为1这一步时,应根据不等式的性质确定不等号的方向是否改变;会灵活运用一元一次不等式的概念及解法的知识解决相关的数学问题。
四说教法、学法
数学知识相对比较抽象,学生在学习是觉得很枯燥,接受新知识会比较困难。为了激发学生学习的主动性、积极性我采用了趣事导入法、类比法。
根据七年级学生注意力不太集中,又好动的心理特点我采用了合作讨论法和自主探究法以提高学生自觉学习的习惯。
五说教学过程
在本节课的教学过程中,我能够根据学生的认知结构和心理特点选择合适的教学方法,激发学生学习的主动性、积极性,将新知识化难为易,提高本节课的教学效果。我主要从以下五个环节进行教学的。
1 回顾旧知,导入新课
首先通过鲁班造锯的故事引入课题,这个故事也正体现了数学中常用的类比数学思想,既能激发学生学习的兴趣,同时这种类比思想有利于提高学生的创造性。再让学生通过解1道含有分母的一元一次方程,进而回顾一元一次方程的概念和解一元一次方程的步骤达到温故知新的目的。
2 探究新知
在教学新课的过程中根据教材的重、难点;学生已有知识的实际现状选择合适的教法和学法并运用多媒体辅助教学以最大限度的提高教学效率。首先我设计了4道很简单的小问题题( 用不等式表示下列各式)得出4个一元一次不等式让学生观察其共同特点从而很顺利的概括出一元一次不等式的概念;再给出5个不等式让学生判断是否为一元一次不等式从而加深对概念的理解;再启发学生类比解一元一次方程的步骤探究一元一次不等式的解法和步骤,进一步比较知其联系与区别,有利于提高学生的概括总结能力。
3 巩固练习
通过学生自主合作解2个一元一次不等式,一个不含分母、不含等号,一个含有分母、含有等号。这样由浅入深的设计让学生更容易注意到在数轴上表示解集时若包括分界点画实心点,若不包括分界点画实心点。
4小结
设计一个问题 (议一议):解不等式移项时应注意什么?系数化为1时应注意什么?在数轴上表示解集时应注意什么?是本节课的知识系统化。
注意:解不等式移项时要变号但不改变不等号的方向;系数化为1时不等式两边同除以或乘负数时不等号的方向要改变;在数轴上表示解集时若包括分界点画实心点,若不包括分界点画空心点。
5 作业布置
让学生把教材第126页第1题和第2题写在课堂作业本上以进一步巩固本节课的知识。
总之,本节课在教学时我采用的是故事导入法、类比数学思想方法。由古代著名的工匠鲁班经过茅草割手的事实类比发明了锯子导入课题,让学生体会类比的数学思想方法的重要性和创新性。从而让他们通过回顾和练习解一元一次方程的过程,借助类比思想探索一元一次不等式的解法,深刻体会温故知新的成就感,进而轻松愉快的获得新知识。
七年级数学说课稿14
一、教材分析
平行线的判定是在学生对平行线有了初步认识及学习了三线八角之后引入的。它不但加深了对“角与平行线”的认识,而且为继续研究平行线的性质、三角形、四边形等知识打下坚实的“基石”,是几何说理的重要组成部分。在本节内容之前学生对两条直线相交或平行的认识,一般停留在直观、表象的层面。本章的任务就是引导学生由表及里,深入认识相交线和平行线的本质特征,通过操作,思考,归纳和推导得到平行线的判定方法,同时在这一过程中获得逻辑思维和说理表达的初步训练。
二、学生分析
我校学生整体的学习能力偏弱,因此逻辑思维能力也相对薄弱,文字语言、符号语言和图形语言之间的转换能力也比较薄弱。因此在本单元的教学中,我们将教学过程分成了体会感知几何说理表达,了解划分逻辑段、补充完善几何说理过程、独立完成几何说理过程三个阶段实施。同时,两课时的教学目标制定如下:
三、教学目标
第一课时:
1.知道平行线的概念及表示方法;会过直线外一点画已知直线的平行线,体验并理解平行线的基本性质。
2.在操作过程中,理解平行线的判定方法1:同位角相等,两直线平行。并会用这一基本事实进行初步的说理,从中感知推理的规则和过程。
第二课时:
1.利用平行线的判定方法,导出平行线的判定方法;
2.初步会用平行线的判定方法来判定两直线平行,并进一步学习几何说理和表达;
3.让学生体会“把新问题转化为已经解决的问题”所体现的化归思想;
4.让学生参与推导过程,树立学习几何知识的信心,提高学习数学的热情。
四、教学难点、重点
第一课时:
1、在操作过程中体验并理解平行线的基本性质,掌握平行线判定方法一。
2、初步会用判定方法一判定两直线平行,初步学习几何说理和表达;
第二课时:
1.利用平行线的判定方法1,导出平行线的判定方法2、3;
2.初步会用平行线的判定方法2、3来判定两直线平行,进一步学习几何说理和表达。
五、教学设计过程
第一课时:
一、复习
1.同位角,内错角,同旁内角的概念。
2.找出图中的同位角,内错角,同旁内角并指出他们分别是由哪两条直线被第三条直线所截得到。
(通过复习相关知识,为后面学生想到同位角相等推出直线平行做铺垫)
二、学习新课
(一)概念学习
1.问题的引入:
在周围世界中到处可见平行线的形象,你能举出在周围所看到的形象为平行线的例子吗?
(学生举例)
(教师可适当补充举例)
(直观感受平行)
2.通过直观图形得出平行线概念:
同一平面内不相交的两条直线叫做平行线,“平行”用符号“//”表示。
提问:在同一平面内,两条不重合的直线有几种位置关系?
如图:直线a和b是平行线,也称它们互相平行,记作“a∥b”,读作“a平行于b”
3.如何画平行线呢?
操作1:利用直尺和三角尺画已知直线的平行线。
(通过此问题的研究,让学生在自己动手操作的过程中,掌握画已知直线平行线的常用方法,同时为引出平行线判定方法一做准备。)
4.思考1:过直线a外一点P画直线a的平行线,可以画几条?
操作2:用平移三角尺的方法画出经过点P且平行于a的直线b。
通过操作的结果得出以下的性质:
(1).平行线基本性质:过直线外一点有且只有一条直线与已知直线平行。
(通过此问掌握平行公理,同时巩固画已知直线平行线的方法)
5.思考2:在画平行线中,三角尺起什么作用?
(教师可提示引导,在三角尺平移的过程中那些量不变)
(构成三线八角图,能否借助于相关角的大小关系来判定两直线平行)
画直线a的平行线b时,直尺所在的直线截a、b所得的同位角∠1和∠2的大小相等
(2).导出平行线判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两直线平行。(简单地说成:同位角相等,两直线平行)
符号语言表示:
如图:因为∠1=∠2
所以a//b(同位角相等,两直线平行)
(熟悉文字语言、符号语言、图形语言的相互转化)
(二)应用新知
1、填空,如图:
(1)如果∠1=∠B,那么_____//______。
(2)如果___________,那么AD//BC。
(本题是定理的直接运用,(1)为填结论,2)为填条件,通过此题熟悉定理的简单运用)
2、如果同一平面内的两条直线垂直于同一条直线,那么这两条直线平行吗?
(1)答:____________(写平行或不平行)
(2)根据图示,说明直线a与直线b平行的理由。
解:因为a⊥c,b⊥c()
所以∠1=______,∠2=______(垂直的意义)
得∠1=∠2(等量代换)
所以a_______b()
结论:同一平面内垂直于同一条直线的两条直线平行。(可以作为今后说理的依据)
3、如图,如果∠1=110°,∠2=70°,那么AB//CD吗?为什么?
解:将∠1的邻补角记作∠3,则∠1+∠3=180°(邻补角的意义)
因为∠1=110°()
所以∠3=180°-∠1=70°(等式性质)
又因为∠2=70°()
得∠2_____∠3()
所以AB//CD()
(此两题为定理的简单运用,第一题需要由垂直得出同位角相等的结论,第二题由邻补角的关系得出同位角相等,进而满足定理条件,推出直线平行。此两题讲解时,老师要做简要分析,如:第一题问要推直线平行,需要什么条件,第二题可问由∠1=110°,可推出那些角等。同时,教师要进行逻辑段的划分,让学生有获得体验感悟。为了降低难度,此两题以填空的形式呈现。)
4、如图,已知D、B、C在一直线,CE平分∠ACD,∠2=∠B,那么AB//CE吗?为什么?
(此题结合角平分线的性质推出同位角相等,进而证明平行,整体逻辑段较少,因此尝试让学生自己说理表达,书写逻辑段,老师结合学生实际情况做适当指导讲解)
三.课堂小结
1.平行线的概念;
2.判定两条直线平行的第一种方法;
3.平行线的基本性质;
四.作业
1、如图,已知点P是三角形ABC的边BC上的一点。
(1)过点P画PD平行于AB,交AC于点D。
(2)过点P画PE平行于AC,交AB于点E。
2、下列图中不能判断直线a与b平行的是()
3、如图,已知∠1=∠2=∠3,请填写理由,说明AB//CD,EF//MN。
解:因为∠1=∠2()
∠1=∠4()
所以∠2=∠4()
得AB//CD()
因为∠1=∠3()
又_____________(对顶角相等)
得______________(等量代换)
所以____________(同位角相等,两直线平行)
4、如图,已知∠D=80°,∠BED=80°,能判定AB//CD吗?并说明理由。
5、如图,直线l与直线a,b,c分别相交,且∠1=∠2=∠3
(1)从∠1=∠2可以得出那两条直线平行?为什么?
(2)从∠1=∠3可以得出那两条直线平行?为什么?
(3)b∥c吗?为什么?
练习说明:
五道练习题中,第一题主要用于巩固练习画平行线的方法。后面四道练习题主要是对判定定理一的应用,难度逐步提高。第二题是定理的简单运用,需要学生通过邻补角、对顶角等关系转化成同位角相等的条件,但不需要进行说理表达,主要考察学生对定理的理解情况。第三题是在熟悉定理的'前提下,考察学生说理表达、逻辑推理的能力,但以填空形式呈现,使难度降低。第四、五题是在第二、三题的基础上让学生自己尝试独立书写说理过程。同时,第五题本是书本上的例题,我放在习题中的目的是为了让学生有充足的时间研究,为第二课时引出判定定理二、三做铺垫。
第二课时:
一、复习引入
1.“三线八角”的研究:两条直线被第三条直线所截,在形成的八个角中根据位置关系的不同,出现了“同位角、内错角、同旁内角”这三种角。
2.上节课中,学习了判定两条直线平行的基本方法,简单的说:同位角相等,两直线平行
二、新课
今天,继续来研究平行线的判定问题,引出课题。
请同学们猜想:除了同位角相等,两直线平行,还有其它的判定两条直线平行的方法吗?
(学生有了第一课时的经验,同时,作业的最后一题中就隐含了内错角相等,可推出两直线平行的结论,学生就有可能从内错角、同旁内角这两类角的特殊关系考虑,老师可做适当提示。)
可能结论:①内错角相等,两直线平行;②同旁内角互补,两直线平行;③同旁内角相等,两直线平行
逐一说理:如图①已知直线a、b被直线l所截,∠1=∠2,试说明a∥b。
如图②已知直线a、b被直线l所截,∠1∠2=180°,试说明a∥b。
结合图形③(反例),说明第三种猜测错误:
归纳、总结部分:
到现在为止,学过了三种判定两条直线平行的方法:①同位角相等,两直线平行;内错角相等,两直线平行;③同旁内角互补,两直线平行。
符号语言表示:
如图:因为∠1=∠2
所以a//b(同位角相等,两直线平行)
因为∠2=∠3
所以a//b(内错角相等,两直线平行)
因为∠2+∠4=180°
所以a//b(同旁内角互补,两直线平行)
(在此环节中学生体验猜想——说理——归纳的过程,初步体会说明一个命题正确需要说理,说明一个命题错误,只要举一个反例。同时,学生进一步体会说理表达的基本形式。进一步熟悉文字语言、符号语言、图形语言的相互转化)
三、应用新知
1.如图直线a、b被直线l所截,已知①∠1=∠2,②∠2=∠3,③∠1∠4=180°,试说明a∥b。
解:∵∠1=∠2(已知)
∴a∥b()
∵∠2=∠3(已知)
∴a∥b()
∵∠1∠4=180°(已知)
∴a∥b()
2.如图,已知∠1=40°,∠B=40°,试说明DE∥BC。
解:∵∠1=40°(已知)
∠B=40°(已知)
∴∠=∠()
∴DE∥BC()
3.如图,已知∠B=50°,∠1=130°,试说明:AB∥CD。
解:∵∠B=50°()
∠1=130°()
∴∠1∠B=°
∴AB∥CD()
4.如图,已知∠1=115°,∠2=65°,那么AB∥CD吗?为什么?
(第一题是定理的直接运用,起到巩固三个定理,进一步明确定理的条件及结论的作用。二、三两题是定理的简单应用,需要学生结合图形,分析条件,判断运用三个定理中的哪一个定理解决问题。比如第三题可以用判定2,也可用判定3,就可以做一个比较优劣。同时以填空的形式降低难度,学生在这两题中进一步体会说理表达的基本规范,教师进一步指导学生认识逻辑段的划分。第四题三个判定定理都能运用,灵活性较大,因此让学生自己尝试解决,先让学生进一步尝试独立书写说理过程,其次,将学生的不同解法展现,拓宽学生思路,相互学习。)
四、课堂小结
1.学习了判定两条直线平行的三种方法;
2.会运用它们判定两条直线平行。
五、作业
1、填空:如图,(1)如果∠1=∠2,那么_____//_____。
(2)如果∠3=∠4,那么_____//____。
(3)如果∠5=∠6,那么____//_____。
(4)如果∠7=∠8,那么____//_____。
2、填空:如图,(1)因为∠A=∠3(已知)
所以_______//________()
(2)写出两个能得到BC//DE的条件_________。
(3)若∠1=70°,当∠5=______时,BC//DE。
3、如图,直线l分别与直线a、b相交,已知∠1=110°,∠2=70°。
(1)填写a//b的理由。(解法一)
解:把∠1的邻补角记为∠3,则∠1+∠3=180°(邻补角的意义)。
因为∠1=110°,()
所以∠3=180°-∠1=70°,又因为∠2=70°,得∠2=∠3()
所以a//b()
(2)填写a//b的理由。(解法二)
解:把∠1的对顶角记为∠4,则∠1=∠4()。
因为____________,(已知)
所以____________,(等量代换)
又因为∠2=70°,得_________________(等式性质)
所以a//b()
(3)请尝试用“同位角相等,两直线平行。”说明a//b。
4、如图,已知∠1=∠3,BE平分∠ABC,要说明DE//BC,请按照正确的说理顺序把下面几句话重新排列,并说明每一步的理由。
(1)因为∠1=∠3
(2)所以∠2=∠3
(3)因为BE平分∠ABC
(4)所以DE//BC
(5)所以∠1=∠2
5、如图,已知∠C=∠D,∠D=∠1试说明:AC∥DF,DB∥EC
(选作)6、如图,在△ABC中,DE垂直BC,∠FEG=90°,∠1=∠2,那么AB//EG吗?并说明理由。
练习说明:
第一题是对定理的直接运用,但要考察学生在较复杂的图形中找出符合条件的基本图形。第二题,在第一题的基础上提高要求,需要学生结合图形自己找出证题的条件。第三题是把练习册上的一道练习改编所得,其中第(1)题没变,主要填写各步的理由,而第(2)题则和第(1)题相反,给出理由,补全步骤。第(3)问则是全部自己书写,但明确方法,三个问题层层递进,逐步加深。同时,第三题有和课堂练习4基本相同,只有数字不同,这也是对课堂学生学习情况的一种检验。第四题综合运用了角平分线的性质和判定定理2,但是给出了说理的所有步骤,要求排出正确步骤,有了一定的指导性,既引导学生在分析过程中形成正确思路,又一定程度降低了难度。第五题在前面的基础上更进一步,要求学生独立完成,对说理过程的规范表达有要求。第六综合性较强,涉及垂直的定义,同角的余角相等,内错角相等等,对学生的逻辑推理及书面表达能力的要求都比较高,因此,留作选做题。
七年级数学说课稿15
一、教材分析
1.地位和作用
“分式的意义”是九年制义务教育课本中七年级第二学期第十五章的第一节内容,是中学知识体系的重要组成部分。分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;有助于培养学生的分析、归纳、概括的能力。
2.学情分析
我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的'延伸拓展和变式处理。
3.教学目标 (1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。
(2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。
(3) 能力目标:初步掌握整式和分式的思想方法,培养学生分析、归纳、概括的能力。
(4) 情感目标:通过学习分式的意义,培养学生的逆向思维能力和学生的辩证唯物主义观点。
4.教学重点与难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
(1)重点:分式的意义:分式与除法的关系;
(2)难点:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”。
二、教学方法与学法本节课教师将以引路的形式,运用启发式的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力的培养,分析、归纳、概括,通过不断的实践和认识,让学生全面地掌握分式的意义,让学生体会到数学不是一门枯燥的学科,对学习数学充满信心。
三、教学过程
本节课的教学我主要分下面这样几个环节
1.设问激疑,以旧探新,类比联想,形成概念
教师先问学生两个问题,帮助学生回忆分数。
思考:请各位同学将下列各题用一个恰当的分数来表示:
1. 一段绳子长3米,把它平均分成4份,则每份长是多少?
2. 甲地到乙地的路程是180千米,一辆汽车行驶7小时,从甲地到达乙地,这辆汽车平均每小时的速度是多少?
然后教师再请学生看以下两个问题。
思考:1.一段绳子长3米,把它平均分成份,则每份长是多少?
2.甲地到乙地的路程是180千米,一辆汽车行驶.
小时,从甲地到乙地,这辆汽车平均每小时的速度是多少?
学生通过运算、比较;可以发现.
是一种新的代数式。教师介绍这种新的代数式,我们称它为“分式”,从而引出课题“分式的意义”。
接着,教师在此基础上引导学生类比联想,给出分式的概念。即两个数相除可以用“”或“”来表示,如果两个代数式A,B相除我们也可以用“A÷B” 或“”来表示。
分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。如:分母中都含有字母,都是分式。
(这样的安排可以刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。)
【七年级数学说课稿】相关文章:
七年级数学说课稿05-29
七年级数学说课稿08-29
七年级数学说课稿08-25
七年级上册数学说课稿07-24
(集合)七年级数学说课稿10-09
七年级数学从算式到方程说课稿10-02
数学乐园说课稿12-08
《数学广角》说课稿07-10
数学说课稿08-17
《数学广角——》说课稿06-21