初中数学说课稿

时间:2024-07-31 14:01:48 说课稿 我要投稿

初中数学说课稿精华[15篇]

  作为一名教学工作者,往往需要进行说课稿编写工作,借助说课稿可以有效提高教学效率。那要怎么写好说课稿呢?下面是小编整理的初中数学说课稿,希望能够帮助到大家。

初中数学说课稿精华[15篇]

初中数学说课稿1

  一、 说教材

  (一)教材分析

  平移和旋转都是学生在日常生活中经常看到的现象。从数学的意义上讲,平移和旋转是两种基本的图形变换。图形的平移和旋转对于帮助学生建立空间观念,掌握变换的数学思想方法有很大作用。

  从二年级上册辨认从不同的位置,观察物体的静态形状,发展到动态感知平移和旋转现象,符合儿童的空间发展水平。教材注意结合学生的生活经验,提供大量感性、直观的生活实例,来感知体会它们的`不同特点,使学生掌握它们的运动规律及平移的方法。为以后学平行线,三角形的分类以及推导三角形、平行四边形、梯形等图形的面积计算公式打好基础。

  (二)设计理念

  结合教材的这一特点,我本着体现生活实践数学化、数学概念实践化这样两个转变,向学生提供有价值的数学学习内容,让学生从日常生活中接触、感悟到的大量事物中,领悟到在生活中处处有数学,处处用数学。通过动手实践、自主探索、合作交流等活动,引导学生主动地、富有个性地学习,从而建立对平移和旋转的认识,通过学生自定向、自运作、自调节、自激励,最终将知识与技能、过程与方法、情感态度与价值观三维目标落到实处。

  (三)教学目标

  知识与技能目标:

通过生活实例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际,初步感知平移和旋转现象。

  过程与方法目标:

通过动手操作,使学生会在方格纸上画出一个简单图形,沿水平方向、垂直方向平移后的图形。

  情感与态度目标:

初步渗透变换的数学思想方法,让学生感受事物之间的内在联系,受到数学美的熏陶。

  (四)教学重点、难点

  教学重点:

正确理解并区分平移和旋转现象。

  教学难点:

在方格纸上画出简单的平移后的图形。

  教具、学具准备:课件、课前小研究、作业纸

  二、 说教法、学法

  数学教学是数学活动的教学,是师生之间、学生之间互动与共同发展的过程。根据课程标准和学生的年龄特点,我采用了情境教学法和活动教学法,并结合我校生本教育的理念,设计了课前小研究,让学生通过自主学习,获得自我发展。

  有效教学的核心是学生参与,学习活动不单是纯粹地掌握书本知识,更重要的是培养学生,自主获取知识和运用知识的能力。因此在学习过程中,我主要体现了通过学生观察比较、合作交流、实践操作等方法,让数学走进学生的生活。

  三、说教学过程

  (一) 感知图形变换

  1、 (自定向)创设情境,引入新课。

  2、 (自运作)研究展示,初次生成。

  3、 (自调节)辨析内化,发现规律。

  4、(自激励)列举现象,深化认识。

  (二) 研究平移距离

  1、(自定向)故事导入,引发思考。

  2、(自运作)操作探究,突破难点。

  3、(自调节)辨析争论,掌握方法。

  4、(自激励)解决问题,形成技能。

  四、 说板书

  平移 旋转

  小火车 小缆车 摩天轮旋转椅

  方向 距离

  向右平移5格

  向右平移7格

初中数学说课稿2

  一、说教材

  用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。

  二、说学情

  任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。

  三、说教学目标

  【知识与技能】

  掌握应用因式分解的方法,会正确求一元二次方程的解。

  【过程与方法】

  通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

  【情感态度与价值观】

  通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

  四、说教学重难点

  【重点】

  运用因式分解法求解一元二次方程。

  【难点】

  发现与理解分解因式的`方法。

  五、说教法、学法

  本节课我主要采用启发式、类比法、探究式的教学方法。教学中力求体现“类比———探究—————归纳”的模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。

  同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性。

  六、说教学过程

  (一)导入新课

  因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。由因式分解从而激发学生的求知欲望,顺利地进入新课。

  (二)探索新知

  问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?

  学生小组讨论,探究后,展示三种做法。

  问题:小颖用的什么法?——公式法

  小明的解法对吗?为什么?——违背了等式的性质,x可能是零。

  小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。

  问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]

  师引导学生得出结论:

  如果a·b=0,那么a=0或b=0

  (如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)

  “或”有下列三层含义

  ①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0

  问题3:

  (1)什么样的一元二次方程可以用因式分解法来解?

  (2)用因式分解法解一元二次方程,其关键是什么?

  (3)用因式分解法解一元二次方程的理论依据是什么?

  (4)用因式分解法解一元二方程,必须要先化成一般形式吗?

  因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。

  这是我会提示学生:1。用分解因式法的条件是:方程左边易于分解,而右边等于零;2。关键是熟练掌握因式分解的知识;3。理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”

  (三)巩固提高

  在这个环节,我遵循巩固与发展相结合的原则,先引导学生练习,练习如下:

  用分解因式法解下列方程吗?

  在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。个别题目采取小组合作的方式对本课知识进行巩固,不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。学生完成课本练习后,补充一道习题,目的是提升学生对因式分解法的理解。同时也起到了分层次教学的作用。

  (四)小结作业

  最后是小结环节,通过本节课的学习你学到了什么,有什么收获。整个过程让学生自己进行,以培养学生的归纳、概括的能力。考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做两类,以便同时兼顾到学有困难和学有余力的学生。

  七、说板书设计

  我的板书本着清晰、简洁、直观的原则,呈现知识的内在联系,板书如下:

初中数学说课稿3

  说教材:

  1.地位和作用:

  本节内容是北师版初中数学初一下册第五章《三角形》的第一节。目的是让学生在对三角形已有的认识的基础上,经历从现实世界中探究出几何模型的过程,科学认识三角形的相关知识、基本要素及其表示方法,然后引导学生通过实验、比较等操作活动来探究三角形三边之间的关系;是"数学来源于生活,而又应用于生活"的重要体现,是对三角形认识的深化,也是今后继续系统探究三角形全等、三角形相似等知识的基础。

  2.教学目标:

  根据本节课在教材中的地位和作用,结合课程标准要求"教学内容应体现基础性,要有利于学生主动地进行数学学习活动,让学生能积极参与数学学习活动,对数学有好奇心和求知欲"的理念。确定本节课的'教学目标如下:

  (1)知识与技能:

  结合具体实例,经历从现实生活中抽象出几何模型的过程,小学语文教学视频进一步认识三角形的概念及其基本要素;经历观察、操作、猜想、推理、交流等活动的过程,掌握三角形三边之间的关系。

  (2)过程与方法:

  通过动手实践、自主探索,培养学生自主学习的能力;通过师生互动探究,培养学生合作交流的能力。

  (3)情感态度与价值观:

  在教学中渗透数学美、数学分类思想,培养学生浓厚的学习热情;同时树立知识来源于生活,又服务于生活的观点。

  3.教学重难点:

  由于学生在小学的学习,对三角形已有所认识,生活中也看到不少的三角形模型,也有了两点之间线段最短的生活经验。因此,学生对知识的学习可能并不是特别困难,但对从现实生活中抽象出几何模型,"数学生活化"思想的理解,以及建立模型后通过自主、合作、探究等多种学习方式,展示知识的形成过程,由众多特例总结归纳三角形三边关系的理解可能会存在一定的困难。因此,我确定本节课的重难点为:

  教学重点:

  ①认识三角形的概念、基本要素及表示方法。

  ②三角形三边关系的探究与理解。

  教学难点:三角形三边关系的探究与理解。

  4.教材处理:

  为了突出重点、突破难点:我对教材做了部分调整,以"猜谜、摆图案"激发学生的学习兴趣,以"生活中的三角形"为切入口,渗透"数学来源于生活,而又应用于生活"的数学理念。让学生更加积极地投入到之后的实验探索中,主动获取知识。在练习题上巧设坡度,降低难度,弱化学习障碍的影响。

初中数学说课稿4

  一.说教材

  《反比例函数的应用》是苏科版八年级下册第九章第三节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。这一节的内容符合新课程理念,课程要面向生活世界和社会实践。反比例函数的知识在生产和实际生活中经常用到,掌握这些知识对学生参加实践活动,解决日常生活中的实际问题具有实用意义。通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。在教学过程中,还渗透着建模思想、函数思想、数形结合思想,这些思想也为后面学习二次函数的应用奠定了基础。

  二.说目标

  “反比例函数的应用”是反比例函数及其图象中的一个重要的内容,它是前面几节课的综合应用。由于函数知识在日常生活中有重要的实用意义,根据教学大纲的明确规定并结合素质教育要求,通过本节课的教学达到以下目标:

  1、知识目标

  使学生了解反比例函数是日常生活和生产实际中应用十分广泛的数学模型,使学生掌握生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。

  2、能力目标

  ①使学生能模仿“利用函数解决实际问题的基本步骤”来解决简单的实际问题;初步养成自己提出或构建数学模型的能力;提高综合运用函数、方程、不等式知识解决实际问题的能力。

  ②引例通过开放性的问题,作业中通过编题培养学生的发散思维能力。

  3、情感目标

  ①通过本节知识的学习,使学生明确,应用反比例函数的知识可以解决生活中的许多问题,从而进一步培养学生热爱数学,进而努力学好数学的情感。

  ②使学生树立事物是普遍联系的辩证唯物观。

  ③引例中让学生具有一方有难八方支援的'献爱心精神。

  三.说教学重难点

  我认为本节课的教学重点是把一类实际问题归结为反比例函数问题来解决,这是因为:

  1.反比例函数是日常生活和生产实践中应用十分广泛的数学模型,它真正体现了数学知识来源于生活又应用于生活的重要意义。

  2.“利用反比例函数解决实际问题的基本步骤”是通过对例题的解题过程进行归纳总结而得到的结论。它遵循了从“具体到抽象再到具体”的认知规律,蕴含了从“特殊到一般再到特殊”的推理方法。对今后学习数学有着重要的指导意义。

  我认为本节课的教学难点是从实际问题中抽象出数学问题,建立数学模型,注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。

  在突破难点时,我注意:

  1.使学生熟练掌握反比例函数的图象和性质,教学生学会“数形结合”的研究方法,它直观、形象、好理解。

  2.密切联系实际问题,注意观察生活。

  四.说教学方法

  (一)教法分析

  根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。对于例1,由于学生初次接触反比例函数的应用,我采用的是教师引导法,降低难度.其余,我都采用的教学方法是问题教学法,让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:

  1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。

  2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。

  (二)学法分析

  这种教学方法实际上也教给学生一种学习方法,使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。

  (三)教学手段

  采用多媒体教学,通过直观演示图象,更好地教会学生“数形结合”的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。

  五.说教学过程的设计

  (一)创设情景,提出问题

  “问题是数学的心脏”(P.R.Halmos语),是数学知识、能力发展的生长点和思维的动力。在课堂教学的开始,我创设了这样一个情景:

  去年下半年,励才中学初一(2)班黄晶晶同学的爸爸诊断为肝癌,家中又突发一场大火,真是祸不单行,一下急需的10万元款从何而来,关键时刻,群众积极响应镇政府的号召,一方有难八方支援,结果,捐款总额比预期的还要理想。如果你是镇政府领导,你除了积极做好思想动员工作之外,能不能运用反比例函数的知识对即将发动群众献爱心进行策划呢?

  为了很好的解决这一问题,我们共同来学习以下两道题目:

  设计意图:由学生身边的事出发,激起学生的爱心,为积极筹划这个活动,带着对数学的求知欲,进入例题的学习。

  (二)范例设计

  学习例1:

  小明家离学校1500m,某天小明上学时,发现时间不多了,就加快了行车速度,①小明行车平均速度(υ)与所用时间(t)有怎样的函数关系?②如果所剩时间为15分钟,那么小明的平均速度至少达到多少才能按时到校?③为了安全起见,小明的平均速度最快达到90m/min,他至少要留多长时间,才能安全到校?④画出函数的图象。

  例1中,出现了一个常量,两个变量;我们看,

  平均速度(υ)随所用时间(t)的变化而怎样变化?是否为反比例函数关系?若是可用反比例函数的有关知识去解决问题.

  ②、③两问实际上就是函数的特殊情形,一是已知自变量,求函数值;一是已知函数值,求自变量.从这两问,再引导学生探求自变量的取值范围. ④问中,指导学生画图,分析问题(多媒体展示函数图象).

  设计意图:这道题是课本例1的改编,更换背景的目的是为了更贴近学生的生活,以更好地激发学生的求知欲.后面的例2也是在课本例2的基础上添加了一个背景,目的也是如此.

  由于学生初次接触反比例函数的应用问题,我选择教师引导法.引导学生联系反比例函数图象及性质建立反比例函数模型,渗透函数思想,数形结合思想.在画图象前,已引导学生探究自变量的取值范围,这样就化解了教学难点.

  小华同学的爸爸在某自来水公司上班,现该公司计划新建一个容积为4×104m3的长方体蓄水池,小华爸爸把这一问题带回来与小华一起探讨:

  ①蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?

  ②如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?

  ③由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长和宽最多只能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?

  这是个几何体积问题的应用题,我通过设置以下问题,引导学生观察思考,逐步分析,最后通过建立函数这种数学模型解决问题.

  问题(1):这是一个几何体积问题,问题中包含有哪些量?哪些是常量?哪些是变量?

  问题(2):在容积不变的情形下,蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?为什么?写出关系式.

  问题(3):函数关系式中自变量的取值范围如何确定?从而决定函数值的取值范围又是怎样?

  问题(4):能否画出函数的图象? (指导学生画图,分析问题,多媒体展示函数图象.)

  问题(5):题中②、③两问能否利用图象来解?如何解?

  问题(6):题中②、③两问除了利用图象来解之外,是不是也可以利用方程解或不等式解?

  设计意图:对例2采用了设计问题系列,启发学生思考,联系旧知识建立函数模型,解决了自变量的取值范围从而确定了函数值的取值范围,渗透了函数的思想,让学生初步了解函数模型的建立方法。最后渗透一题多解方法,培养学生思维的灵活性,渗透“函数——方程——不等式”思想和“数形结合”的研究方法,引导学生学会解题后的再思考,将知识系统化。

  (三)反馈练习

  “学数学而不练,犹如入宝山而空返”(华罗庚语),为了让学生更好地学会反比例函数知识的应用,我设计了例2的后续问题,让学生练习。使课堂教学能前后连贯。

  例2中的新建蓄水池工程需要运送的土石方总量为4×104m3,某运输公司承担了该项工程运送土石方的任务。

  ①运输公司平均每天的工程量υ(m3/天)与完成运送任务所需要的时间t(天)之间有怎样的函数关系?

  ②运输公司共派出20辆卡车,每辆卡车每天运土石方100 m3,则需要多少天才能完成该任务?

  可以通过此类题反馈本节所学,检查学生是否掌握了“数形结合”的研究方法,及时加强对数据和信息的处理能力。

  (四)回到引例,前后呼应

  ①现在大家能否利用我们刚掌握的知识来策划发动群众献爱心呢?

  ②如果每人平均捐款100元,那么需要发动多少人捐献。根据实际生活水平,每人平均捐款只能达到50元,那么至少要发动多少人捐献?发动人数与每人平均捐款数成怎样的函数关系?当每人平均捐款数一定时,捐款总额与发动的人数成怎样的函数关系?

  设计意图:让学生回到课堂之初的问题中,解决问题,使整个课堂教学浑然一体,体验学习数学的乐趣。

  (五)收获

  教师启发学生思考回答下列问题,再由教师补充归纳本节所学知识内容。

  (1)通过本节反比例函数的应用的学习,我们掌握了生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。

  (2)初步学会了数学建模的方法.

  (3)树立了事物是普遍联系的辩证唯物观。

  (六)作业布置

  根据新课程理念,人人学有价值的数学,不同的人在数学上有不同的发展.我的作业布置分必做题和选做题两部分,其中选做题是一道自编题,我的目的是既巩固所学知识,又复习了旧知,同时还能让学生体验一下做老师的愉悦.

  (4)必做题:①看课本例1、例2.

  ②做课本习题9.3

  (5)选做题:

  4月6日,姜堰溱湖湿地公园游人如织,来自世界各地的游人蜂拥而至,“小数学”利用早上上学前的时间,来到公园门口,他发现……。请你利用我们学过的知识,编两题,要求分别能利用正比例函数和反比例函数解决问题。

  收获

  结束语:

  教学过程是一个不断生成的过程,在教学过程中,我将根据学生实际情况,不断调整我的教学内容,以使学生在课堂上的思维永远处于一种亢奋状态。

  说课对我来说是新事物,今后我将进一步说好课,并希望各位专家领导对本节课提出宝贵意见。

  谢谢各位!

初中数学说课稿5

  一、教材分析

  1、教材的地位和作用

  一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

  2、教学目标

  根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体现在:

  知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

  过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念 。

  情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。

  3、教学重点与难点

  要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发。所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念初中数学说课稿精选初中数学说课稿精选。鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此把由实际问题转化成数学方程确定为本节课的难点。

  二、教法、学法

  因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景———数学模型—————概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

  三、教学过程设计

  创设情景,引入新课

  因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过微机演示课本中的实例,并应用微机对其进行分析,充分显示微机演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

  初中数学说课稿三

  一、教材分析

  (一)地位、作用

  本节课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。

  (二)教学目标

  根据学生已经有的知识基础,依据《教学大纲》的要求,确定本节课的教学目标为:

  1、知识与技能

  (1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。

  (2)掌握“对顶角相等的性质”。

  (3)理解对顶角相等的说理过程。

  2、过程与方法

  经历质疑,猜想,归纳等数学活动,培养学生的.观察,转化,说理能力和数学语言规范表达能力。

  3、情感态度和价值观

  通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。

  (三)重点,难点

  根据学生已有的知识基础,依据教学大纲的要求,确定本节课的重难点为:

  重点:邻补角和对顶角的概念及对顶角相等的性质。

  难点:写出规范的推理过程和对对顶角相等的探索。

  二、教学方法

  在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识过程。

  三、学法指导

  让学生学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。

初中数学说课稿6

  一、教材分析

  ▲教材的地位和作用

  《整式乘除》这一章与七年级《有理数的运算》中幂的乘方,有理数乘法的运算律和《代数式》的内容联系紧密,是这两章内容的拓展和延续。而幂的乘方是该章第二节的内容,它是继同底数幂乘法的又一种幂的运算。从数的相应运算入手,类比过渡到式的运算,从中探索、归纳式的运算法则,使新的运算规律自然而然地同化到原有的知识之中,使原有的知识得到扩充、发展。在这里,用同底数幂乘法的知识探索发现幂乘方运算的规律,幂乘方运算的规律又是下一个新规律探索的基础,学习层次得到不断提高。

  ▲学情分析

  ①说已有知识经验

  学生是在同数幂乘法的基础上学习幂的乘方,为此进行本节课教学时,要充分利用这些知识经验创设教学情境。

  ②说学习方法和技巧

  自主探索和合作交流是学好本节课的重要方法。教学中充分利用具体数字的相应运算,再到一般字母,通过观察、类比、自主探索规律,通过合作交流、小组讨论探索规律的过程,培养学生的合作能力和逻辑思维能力。

  ③说个性发展和群体提高

  新课标强调:一切为了学生的发展。就是要求教师通过科学的教育教学方式,使每一个学生都能在原有的基础上得到长足的发展。因此,在学习过程中,我尤其关注那些胆子小、能力弱的学生,鼓励他们大胆动手,勤于思考,敢于质疑,使他们积极参与到整个探索活动中;而对那些平时动手能力强的学生,要求他们学会合作,学会交流,在合作探索中养成争鸣、勇于创新的科学态度,使各类学生都有所收获、提高和发展。

  ▲教材重难点

  重点:幂的乘方的推导及应用。

  难点:区别幂的乘方运算中指数运算与同底数幂的乘法运算中的不同。

  二、教学目标

  新课标要求以培养学生能力,培养学生兴趣为根本目标,结合学生的年龄特征和对教材的分析,确立如下教学目标:

  ㈠知识与技能目标

  ⑴通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的发生过程。

  ⑵掌握幂乘方法则。

  ⑶会运用法则进行有关计算。

  ㈡过程与方法目标

  ⑴培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力。

  ⑵体会具体到抽象再到具体、转化的数学思想。

  ㈢情感、态度与价值观

  体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。

  三、教法与学法

  教法:鉴于初二学生已具有一定的数学活动能力和经验型的抽象逻辑能力,以学生为本的思想为指导,主要采用引导探究法。让学生先独立思考,再与同伴交流各自的发现,然后归纳其中的规律,获得新的认识,同时体验规律的探索过程。

  学法:自主探索、合作交流的研讨式学习,目的使学生在探究的过程中体验过程,主动建构知识,同时培养学生动口、动手、动脑的能力。

  教学手段:采用多媒体辅助教学。

  四、教材处理

  ⑴通过正方形桌面边长为81cm,即34cm,求其面积从而引出问题,让学生感受幂的'乘方运算也是来源于生活的需要,从而激发学生的求知欲。

  ⑵为了让学生更好地领会两种运算的区别和应用,特补充例2和改错题。

  ⑶获取新知后,设计一个以学生熟悉和喜爱的智力玩具魔方为背景的探究活动,让学生再次体会幂乘方的自然应用。

  ⑷课外作业中补充一道极限挑战,是用幂乘方运算的逆运算来解决的,有一定的难度。既让学生有足够的思考空间,又能让一些学有余力的学生得到更高的发展,也培养了学生的创新思维。

  五、教学过程

  学生的学习是以其原有的认知结构为基础,主动建构知识的过程,依据学生的认知规律,将教学过程分以下几个环节:

  ①创设情境,引入课题。

  ②自主探索,展示新知。

  ③应用新知,解决问题。

  ④反馈练习,拓展思维。

  ⑤学有所思,感悟收获。

  ⑥布置作业,学以致用。

  1、创设情境,引入课题

  《课程标准》指出:学生的数学学习应当是现实的、有意义的。根据本节课的教学内容和特点,经反复推敲,我准备以复习和实际事例导入。设计两个问题:

  问题1:同底数幂的乘法法则是怎么样的?

  问题2:如果一个正方形桌面的边长81cm即34cm,则其面积可表示为(34)2cm2,如何计算其结果呢?

  设计意图:以实例引入课题,强化了数学应用意识,使学生真真切切地感受到幂的乘方运算因实际需要而生,最后以解决问题而终的学以致用的思想,从而激发了学生的求知欲望。

  2、自主探索,展示新知

  (1)自主探索

  出示幻灯片试一试

  请计算下列各题:①(23)2 ②(104)2 ③(104)100 ④(a3)n

  (多媒体演示时,先出现①②,再出现③,最后出现④)

  设计意图:①②两小题既是旧知识的巩固复习,也让学生体验转化的数学思想。第③小题的指数很大,让学生感受寻找幂乘方运算规律的必要性,激发了学习动机。第④小题将底数改成字母a,这里从具体数字到一般字母,循序渐进,符合学生的认知规律,同时也为导出(am)n做好铺垫。

  (2)合作交流,展示成果

  计算:(am)n

  设计意图:数学教学过程是学生对有关的学习内容进行探索与思考的过程,学生是学习活动的主体,教师是学习活动的组织者、引导者和合作者。因此,我首先鼓励学生观察第①、②、③、④题,等式两边的底数和指数发生了什么变化?从而归纳猜想(am)n的结果。通过小组讨论,展示成果,体验规律的探索过程,培养学生逻辑推理能力、语言概括能力。

  3、应用新知,解决问题

  (1)出示例1:计算下列各式,结果用幂的形式表示(多媒体演示)

  ①(107)2 ②(b4)3 ③(am)4 ④[(x-y)3]5

  ⑤[(-2)2]10 ⑥-(y3)4 ⑦ (-y3)4

  设计意图:(1)华罗庚说过:学数学而不练,犹如入宝山而空返。设计例1让学生新鲜体验,巩固新知,使充分展示自我,体验成功。 (2)第①、②、③、④题让学生体验(am)n中a可以是一个数、一个字母,也可以是一个多项式。

  (3)第⑤、⑥、⑦题当底数带有负号时,该如何处理,为后面例2中第③小题作了铺垫。

  (2)出示例2:计算下列各式

  ①(y2)3(y3)4 ②xx2x3-(x2)3+x2-x4

  ③(-2)2(-23)4 ④100010n(103)2

  设计意图:①幂的乘方与同底数幂乘法及合并同类项的混合运算,不仅要弄清计算顺序,而且更要清楚什么样的运算用什么样的法则,加强新旧知识的联系,拓展思维。

  ②不同层次学生的思维得到不同的发展,促进学生从模仿走向成熟。新课标指出:数学学习中教师的教和学生的学必须是开放多样的,适当增加练习的难度,可以使学生的思路更广阔、更灵活。

  (3)比较同底数幂的乘法和幂的乘方法则的区别和联系(多媒体演示)

  设计意图:有了例2的铺垫,学生有了形象的感知后,重新疏理知识,内化为理性认识,从而突破难点。

  4、反馈练习,拓展思维

  (1)出示改错题(多媒体演示)

  下列各题计算正确吗?

  ①(x2)3+x5=x5+x5=2x5

  ②x3x6+(x3)3=x9+x9=x18

  ③x2(x4)2+x5x2=x10+x10=x20

  设计意图:加深同底数幂乘法、幂的乘方及合并同类项的区别。

  (2)设计一个探究活动(多媒体演示)

  魔方是匈牙利建设师鲁比克发明的一种智力玩具,设组成魔方(如图1)的每一个小立方块(我们称它为基本单元)的棱长为1,那么一个魔方的体积是33,现在设想以这种魔方为基本单元做一个大魔方(如图2),那么这个大魔方的体积能否用3的正整数次幂表示?怎样表示?如果再以这个大魔方为基本单元做一个更大的魔方呢?

  设计意图:以学生熟悉和喜爱的智力玩具魔方为背景,探索大魔方的体积为表示方法,体会幂的乘方的自然应用,寻找运算法则的实际意义。让学生体会数学美和数学的价值,同时也激发了学生的学习兴趣。

  5、学有所思,感悟收获

  设计三个问题:

  ①通过本节课学习,你学会了哪些知识?

  ②通过本节课学习,你最深刻的体验是什么?

  ③通过本节课学习,你心里还存在什么疑惑?

  设计意图:学生畅所欲言,在以生为本的民主氛围中培养学生归纳、概括能力和语言表达能力,同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人。

  6、布置作业,学以致用

  必做题:作业本

  选做题:①已知1624326=22x-1,(102)y=1020求x+y.

  ②已知:比较2100与375的大小。

  设计意图:分层次作业使不同层次的学生得到了不同的发展,又为后续学习打下了良好的基础。

  六、板书设计幂的乘方幂的乘方法则的

  推导过程同底幂的乘法法则

  幂的乘方法则范例板书

  学生练习设计意图:展示知识结构,突出重难点,加强理解记忆。

  七、设计说明

  1、以学生为本。每个教学环节的设计,都注重以学生原有的知识和经验为基础,面向全体学生,让学生主动参与到教学中来,允许不同学生提出不同的想法,使不同学生在思维上得到不同的发展。

  2、注重反思。数学家波利亚强调问题解决有四个步骤,其中第四步就是回顾反思。只有把培养反思能力与培养观察探究能力、合作交流能力和解决实际问题等能力有机结合起来,才能使学生学会学习,才能真正实现教是为了不教,学是为了会学!

初中数学说课稿7

  一、 教材分析

  教材的地位和作用:

  矩形是在学生已经学习了四边形、平行四边形,积累一定的经验的基础上学习的。它是这章的重点内容之一。既是平行四边形知识的延伸,又为学习其它特殊平行四边形提供了研究方法和学习策略,也为今后学习其它有关知识奠定了基础,起承上启下的重要作用。

  二、教学目标

  根据教学大纲对本节内容的要求及本课内容的特点,运用新课程理念,结合学生实际情况,我把本节课的教学目标确定为:

  知识技能:

  1.理解矩形有关概念,根据定义探究并掌握矩形的有关性质。

  2.了解矩形在生活中的应用,根据矩形的性质解决简单的实际问题。

  数学思考:

  1.经历矩形的概念和性质的探索过程,发展学生合情推理意识,掌握几何思维方法。通过观察、思考、交流、探究等数学活动,发展学生的思维能力和语言表达能力。

  2.根据矩形的性质进行简单的计算和应用,培养学生逻辑推理能力,培养几何直觉向思维逻辑转化的习惯,进一步体会类比及数形结合的思想方法。

  解决问题:

  通过学生观察、实验、分析、交流,引出矩形的概念,感受数学思考过程的.条理性及解决问题策略的多样性,通过收集生活中的数学信息以及应用所学知识解决生活中的问题,进一步体会数学与生活的联系,增强应用数学意识。

  情感态度:在与他人的交流合作中,让学生感受数学活动充满探索的乐趣,提高学生的学习热情和学习的积极性,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题、探究问题的能力。发展学生的主动探索和独立思考的习惯。

  三、教学重点:矩形的性质及其应用。

  教学难点:理解矩形的特殊性,探究矩形特殊性质。

  四、教法及手段:

  根据本课内容和学生的特点及教学的要求,采用教师引导——自主探究——合作交流的方法。使教师的主导地位和学生的主体地位得到充分体现。

  教学手段:采用多媒体(PowerPoint,几何画板)、实物投影辅助教学。

  五、教学过程

  本课的设计环节如下:创设情境 引入新课、动手操作 得出定义、引导探究 得出性质、运用新知 解决问题、归纳小节 巩固新知、分层作业 学有所得。

  在本课各个环节设计中力求突出以下几个方面:

  1、数学问题生活化

  设计中我遵循数学源于生活又服务于生活课标要求。注重问题情境的创设,让数学问题生活化,活动1我展示给同学们一张校园门口的照片,让同学们感受生活中到处传递着数学信息,通过观察、搜集并分析熟悉的图形,体会数学在生活中的应用,进而引出活动2 ; 性质应用中计算电视屏幕的大小,也是与生活联系非常密切的问题,有的学生还不知道电视的大小是指的对角线的长短,通过这道题目,让学生了解到生活的常识,也让学生进一步体会数学在生活中的作用,而且通过问题的解决培养学生爱数学、学数学的热情。

  2、创设自主探究情境,发挥学生的主动性

  矩形定义的探究,学生拿出自制平行四边形学具,分组活动,通过学生观察、实验、分析、交流,引出矩形的概念,把平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形。并通过学生找出生活中的实例,让学生感受数学美及数学与生活的联系。矩形性质的探究是让学生类比平行四边形的性质,通过观察、测量、分析、证明等手段,()让矩形的性质在活动中"浮出水面".活动中让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给学生。我在评价中对活动积极的小组和个人进行表扬,增强学生创造的信心,体验到成功的快乐。性质1是学生小组交流完成的证明。而性质2要求学生认真写出已知、求证和证明过程,在此基础上请一个学生上黑板板书,其余学生观察其板书正确与否。培养几何直觉向思维逻辑化转化的习惯,培养学生发散思维能力,养成良好的解题习惯。 活动中让学生充分经历知识形成的全过程。同时也积累了良好的学习经验。

  3、训练学生的逻辑思维,培养学生严谨的解题习惯。

  本节课新知应用环节,我设计了3个题目。练习1是性质的定义的直接应用,在巩固新知的同时,引导学生进一步发现与矩形中所包含的基本图形,从而让学生感受矩形与等腰三角形与直角三角形有密切的关系,让学生体会知识的联系与延伸,培养几何直觉向思维逻辑转化的习惯,培养学生发散思维能力。例题的设计是让学生体会性质应用的同时规范学生的解题步骤和格式,让学生感受数学思维的严谨性。练习2是生活中的问题,让学生体会生活中的数学,做到学用结合,培养学生学习数学的的热情和情趣。

  4、教学活动中注重体现人人学有价值的数学

  首先根据不同学生的智力、能力、基础不一,把学生编排成探究小组,在探究中注重组内帮带,以互帮互助促进不同层次的学生共同提高,其分组的原则是:数学成绩优秀的,组织能力强的、动手能力强的、成绩中等的、基础差的。 其次是作业的设计体现的是层次性。我把作业分为必做题和选做题两种。必做题较基础,可以发现和弥补课堂学习的遗漏和不足。备选题则仅供学有余力的学生选用。另外数学日记是帮助学生总结本节课的收获和不足,培养学生善于总结和反思的习惯。

  5、充分利用多媒体辅助教学

  本节课是采用多媒体进行辅助教学的,给学生以直观感性的认识,培养学生观察、表述、归纳的能力。 使教学目标得以顺利完成。

  以上,是我设计本节课的一些做法和体会,有不妥之处请大家多提宝贵意见,谢谢大家!

初中数学说课稿8

各位评委:

  下午好!今天我说课的题目是《分式的乘除法(第1课时)》,选用是人教版的教材。根据新课标的理念,对于这节课,我将以教什么,怎样教,为什么这样教为思路,从说教材、说学情、说教法学法、说教学过程、说板书等五个方面加以说明。

  一、 说教材

  (一)教材的地位和作用

  本节教材是八年级数学第十六章第二节第一课时的内容,是初中数学的重要内容之一。一方面,这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。因此,这节课在整个的初中数学的学习中起着承上启下的过渡作用。

  (二)教学目标分析

  根据新课标的要求和这节课内容特点,考虑到年级学生的知识水平,以及对教材的地位与作用的分析,我制定了如下三维教学目标:

  1.认知目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

  2.技能目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

  3.情感目标:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。

  (三)教学重难点

  本着课程标准,在充分理解教材的基础上,我确立了以下的教学重点、难点:

  教学重点:运用分式的乘除法法则进行运算。

  教学难点:分子、分母为多项式的分式乘除运算。

  下面,为了讲清重点难点,使学生能达到这节课的教学目标,我再从教法和学法上谈谈:

  二、说学情

  1.学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移。

  2.八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习。

  三、说教法学法

  (一)说教法

  教学方式的改变是新课标改革的目标,新课标要求把过去单纯的老师讲,学生接受的教学方式,变为师生互动式教学。师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师主导、学生为主体的原则,结合这节课的内容特点和学生的年龄特征,这节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以师生互动的形式,在教师的指导下突破难点:分式的乘除法运算,在例题的引导分析时,教学中应予以简单明白,深入浅出的分析本课教学难点:分子、分母为多项式的.分式乘除运算。让学生在练习题中巩固难点,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  (二)说学法

  从认知状况来说,学生在此之前对分数乘除法运算比较熟悉,加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力和活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为这节课适合采用学生自主探索、合作交流的数学学习方式。一方面运用实际生活中的问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性。不但让学生"学会"还要让学生"会学"

  四、说教学过程

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈这节课的教学过程安排:

  (一)提出问题,引入课题

  俗话说:"好的开端是成功的一半"同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:

  问题1求容积的高是 ,(引出分式乘法的学习需要)。

  问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。

  从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。

  (二)类比联想,探究新知

  从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。

  解后总结概括:

  (1)式是什么运算?依据是什么?

  (2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)

  (学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。

  【分式的乘除法法则 】

  乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

  除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被除式相乘。

  用式子表示为:

  设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受,体现了自主探索,合作学习的新理念。

  (三)例题分析,应用新知

  师生活动:教师参与并指导,学生独立思考,并尝试完成例题。

  P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破这节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。

  (四)练习巩固,培养能力

  P13练习第2题的(1)(3)(4)与第3题的(2)

  师生活动:教师 出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。

  通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。

  (五)课堂小结,回扣目标

  引导学生自主进行课堂小结:

  1.这节课我们学习了哪些知识?

  2.在知识应用过程中需要注意什么?

  3.你有什么收获呢?

  师生活动:学生反思,提出疑问,集体交流。

  设计意图:学习结果让学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。

  (六)布置作业

  教科书习题6.2 第1、2(必做) 练习册P (选做),我设计了必做题和选做题,必做题是对这节课内容的一个反馈,选做题是对这节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  五、说板书设计

  在这节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。

初中数学说课稿9

  各位评委:

  大家好!今天我说课的题目是 ____,所选用的教材为浙教版义务教育课程标准实验教科书。

  根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。(或加教学评价)

  一、教材分析

  1、教材的地位和作用

  本节教材是初中数学____ 年级第____章第____节的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。

  2、学情分析

  从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:______________难点确定为:____________________

  二、教学目标分析

  根据新课标的教学理念,培养学生的`数学素养和终身学习的能力,我确立了如下的三维目标:

  1. 知识与技能目标:初步掌握____,能够运用所学的知识解决一些简单的问题。

  2. 过程与方法目标:经历探索____的过程,培养学生观察分析、类比归纳的探究能力,加深对函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论等数学思想的认识。

  3.情感态度与价值目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

  三、教学方法分析

  本节课我将采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的"最近发展区"设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就旧,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的知识、方法、体验三个方面进行归纳,我设计了这么三个问题:

  ① 通过本节课的学习,你学会了哪些知识;

  ② 通过本节课的学习,你最大的体验是什么;

  ③ 通过本节课的学习,你掌握了哪些学习数学的方法?

  (7) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

初中数学说课稿10

  [说教材]

  一、教材分析

  (一)、教材地位作用:《正方形的判定》是华东师大版义务教育实验教材数学八年级(下册)第20章第4节的内容,本节课注重新旧知识的联系与类比,注重图形的分析、判别;在学生学习了平行四边形、距形、菱形的判定之后,接触正方形的性质的基础上,引入了正方形的判定,这一节课既是前面所学知识的延续,又是对平行四边形、菱形、矩形的判定进行综合的不可缺少的重要环节。

  (二)、教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  知识目标:

  1、掌握正方形的判定方法。

  2、运用正方形的`判定方法解决问题。

  能力目标:

  1、让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力,让其逻辑推理能力有进一步的提升。

  2、灵活应用正方形的判定,培养学生的思维能力。

  情感目标:通过对平行四边形、距形、菱形等判定方法的类比,进一步领悟类比的思想方法和数形结合的思想。

  (三)教学重点与难点:根据数学课程标准的要求,结合学生的实际特点,确定教学的重点与难点:

  重点:正方形的判定方法。

  难点:正方形判定方法的应用。

  (充分运用多媒体教学手锻,并把课件设置为比较生动、有趣容、易懂的动画,设置问题、探究讨论、例题讲解、巩固练习、课堂小结直到布置作业,突出主线,层层深入,逐一突破重难点。)

  [说学生]

  二、学情分析:

  初二学生经过两年的几何学习,学生对几何图形的观察,几何图形的分析能力已初步形成。但我教了几年的数学中发现一些很严重的问题,也就是我最头痛的问题,学生很怕做几何题,特别是证明题,具体有两种情况:“不会看也不会写”、“会看但写不出来”,即文字表述无法用几何语言来表示,逻辑推理过程混乱。

  [说教学法]

  三、教法选择:

  本节课的内容虽然不多,但是前三节课内容平行四边形、菱形、矩形的判定进行综合,对学生的逆向思维与推理能力要求比较高,针对本班的学生的知识结构和心理特征,因此我采用了多媒体辅助教学,运用了“情境引入、动手操作、合作交流、引导提问、归纳论证、深化巩固”的启发式教学方法。教学中,引导学生经历“提出假设——操作验证——推理论证”的过程,充分感受教学思维的特点,进一步提高逻辑推理的能力,增强探索新知识的兴趣。

  四、学法指导:

  结合本课内容特点和新课标精神,学生在学习中发挥主体作用。采取“假设、操作、观察、思考、讨论、论证、类比、应用”的探究式学习方法,在掌握新知识的同时,培养大胆猜想、独立思考、合作交流、勇于探索的良好习惯,提高操作观察能力和逻辑思维水平。

  [说教学过程]

  五、教学过程:

  根据《新课标》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课的教学过程我是这样设计的:

  六、教学评价

  本节课是我前几天刚上的内容,在教学设计上,我依据教材、《课标》及学生实际情况,坚持了以学生为中心的教学思想,运用了引导启发式的教学方法,教学内容的组织考虑了逻辑顺序与心理顺序的结合、知识学习与技能人格发展的统一,取得较好的效果。但还有一部分的学生在课堂上已掌握,但过几天后就忘记了,这些学生都存在很多问题,如少练、厌学的现象。所以在以后的教学工作中还要努力改进。

初中数学说课稿11

  【教材分析】

  《代数式》是浙教版七上实验教材第四章第二节课程。本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式。从数到式是学生认识上 “质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始。同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义。

  【学生情况分析】

  在本节内容学习之前,学生已具有了如下的“现有发展区”。但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解。

  【教学目标】

  根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:

  知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平来确定的。

  过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。

  【重点难点】

  教学重点:代数式的概念及用代数式表示常用的数量关系。

  教学难点:用代数式表示实际问题中的.数量关系。

  【教法学法】

  根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点。

  在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”。

初中数学说课稿12

  一、 教材分析

  (一)教材地位

  这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)教学目标

  知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.

  过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.

  情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.

  (三)教学重点:

  经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

  教学难点:用面积法(拼图法)发现勾股定理。

  突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.

  二、教法与学法分析:

  学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.

  教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

  学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.

  三、 教学过程设计

  1创设情境,提出问题

  2.实验操作,模型构建

  3.回归生活,应用新知

  4.知识拓展,巩固深化

  5.感悟收获,布置作业

  (一)创设情境提出问题

  (1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.

  (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的`云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.

  二、实验操作模型构建

  1.等腰直角三角形(数格子)

  2.一般直角三角形(割补)

  问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?

  设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.

  问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)

  设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.

  通过以上实验归纳总结勾股定理.

  设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律.

  三.回归生活应用新知

  让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.

  四、知识拓展巩固深化

  基础题,情境题,探索题.

  设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.

  基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

  设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维.

  情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?

  设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

  探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

  设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.

  五、感悟收获布置作业:这节课你的收获是什么?

  作业:

  1、课本习题2.1

  2、搜集有关勾股定理证明的资料.

  板书设计

  探索勾股定理

  如果直角三角形两直角边分别为a,b,斜边为c,那么

  设计说明:

  1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.

  2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.

  初中数学说课稿课件:《认识平行四边形

  【说教材】

  一、说课内容:苏教版数学四年级下册第43~45页。

  二、教学内容的地位、作用和意义:

  这部分内容是在学生已经初步掌握了长方形、正方形、三角形的特征,以及初步认识平行和相交的基础上,进一步认识平行四边形,并掌握其特征。通过这节课深入的学习,使学生为今后进一步学习平行四边行面积计算打下基础。教材中第一个例题,首先联系生活实际,让学生找出一些常见物体上的平行四边形,再要求学生根据个人的生活经验举例,充分感知平行四边形;接着让学生做出一个平行四边形并相互交流,初步感受平行四边形的基本特征。在此基础上,抽象出平行四边形的图形让学生认识,引导学生探索发现平行四边形的基本特征。第二个例题认识平行四边形的底和高,并揭示高和底的意义。“试一试”让学生动手测量几个平行四边形指定底边上的高及相应的底,进一步感受高与底的意义。

  三、说目标

  1、知识与技能目标

  (1)理解平行四边形的概念及其特征。

  (2)认识平行四边形的底和高,会画高。

  (3)培养学生实践能力,观察能力、分析能力。

  2、过程与方法目标

  让学生通过动手操作,动眼观察,动口表达,动脑思考等方式使学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。

  3、情感态度与价值观目标

  让学生感受图形与生活的密切联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣,在探索中感受成功的乐趣。

  四、教学重点、难点:

  教学重点:是认识平行四边形;利用材料做平行四边形并发现其特征;能测量或画出平行四边形的高。

  教学难点:是学生在做平行四边形的过程中体会其特征。

  五、说教具和学具准备

  教具:三角板、平行四边形纸片、长方形活动框、小黑板等。

  学具:三角板、平行四边形纸片、量角器。

  【说学情】

  四年级学生思维活跃,求知欲强,喜欢动手、动脑。有很强的好奇心和探索欲望。因此在教学中我抓住这些特点让他们通过动眼观察、动手操作、动脑分析归纳等来理解所学知识。

  【说教法和学法】

  这节课教师要注重以教师的导和学生的学为主线,通过教师提问、演示、指导。学生动手操作、观察、分析、讨论、归纳等方法来完成教学,使学生在轻松愉快中获得新知。我们认为在本课教学中应体现以下几点

  一、联系生活实际进行教学

  “数学的生活化,让学生学习现实的数学”是新课程理念之一。教学时应先让学生从生活场景图中找平行四边形,再寻找生活中的平行四边形。最后举例说明平行四边形容易变形的特性在生活中的应用。使学生感受到“数学从生活中来,到生活中去”。使数学课堂回归到生活世界。

  二、让学生在活动中探究

  心理学家皮亚杰说:“活动是认识的基础,智慧从动作开始。”在教学中通过学生做平行四边形、相互交流,从中感受平行四边形的特征。在“想想做做”中通过拼一拼、移一移、剪一剪等活动,让学生感受不同平面图形之间的联系。

  三、独立思考与合作交流

  本课教学安排了两次合作交流,在合作交流之前我都给予学生充足的时间去独立思考,这样在合作交流时才有话可说,思维才能碰撞。

  【说教学程序】

  一、创设情境导入新课

  1、介绍七巧板

  师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?

  一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。

  2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)

  【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】

  二、尝试探索建立模型

  (一)认一认形成表象

  师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?

  不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)

  (二)找一找感知特征

  1、在例题图中找平行四边形

  师:老师这有几幅图,你能在这上面找到平行四边形吗?

  2、寻找生活中的平行四边形

  师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)

  (三)做一做探究特征

  1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?

  2、在小组里交流你是怎么做的`并选代表在班级里汇报。

  3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)

  4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)

  【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】

  (四)练一练巩固表象

  完成想想做做第1、2题

  (五)画一画认识高、底

  1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?

  2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。

  3、平行四边形的高和底书上是怎么说的呢?(学生看书)

  4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)

  5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)

  6、画高(想想做做第5题)(提醒学生画上直角标记)

  三、动手操作巩固深化

  1、完成想想做做第3、4题

  第3题:拼一拼、移一移,说说怎样移的?

  第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。

  2、完成想想做做第6题(课前做好,课上活动。)

  (1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。

  (2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?

  (3)得出平行四边形的特性

  师再捏住平行四边形的对角向里推。看你发现了什么?

  师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)

  (4)特性的应用

  师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)

  【设计意图:】

  四、畅谈收获拓展延伸

  1、师:今天这节课你有什么收获吗?

  2、用你手中的七巧板拼我们学过的图形。

  3、寻找平行四边形容易变形的特性在生活中的应用。

  【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】

初中数学说课稿13

  一、教学目标

  1. 知识与技能目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2. 过程与方法目标:激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

  3. 情感态度与价值观目标:渗透转化的数学思想和极限思想。

  二、教学重点

  正确计算圆的面积

  三、教学难点

  圆面积公式的推导

  四、教具准备

  多媒体课件,圆片

  五、教学设计

  (一)复习旧知,导入新课

  1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?( 2πr)周长的一半怎样表示?(πr)

  2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

  3.课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积) 谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

  4. 提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

  这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

  (二)动手操作,探索新知

  1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示)

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式)

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

  那么同学们想一想,圆可能转化为什么平面图形来计算呢?

  2. 推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。教师评价。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的.一半×半径

  S=πr × r

  S=πr2

  师小结公式 S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  3. 利用公式计算。

  (1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

  (2)出示例3,学生尝试练习,反馈评价。

  提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

  (三)运用新知,解决问题

  1. 求下面各圆的面积,只列式不计算。(CAI课件出示)

  2. 测量一个圆形实物的直径,计算它的周长及面积。

  3. 课件演示: 用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

  (四)全课小结

  这节课你自己运用了什么方法,学到了哪些知识?师生共同回顾。

  (五)布置作业

  1. 第97页的第3题和第4题。

  2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物 直径(厘米) 半径(厘米) 面积(平方厘米)

  六、板书设计:

  圆的面积

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

初中数学说课稿14

尊敬的各位考官大家好,我是X号考生,今天我说课的题目是《平方差公式》。

  今天我将从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  首先谈谈我对教材的理解。本节课是北师大版初中数学七年级下册第一章第五节的第一课时,主要内容是用代数方法得出平方差公式并进行简单应用。此前学生掌握了多项式乘多项式的计算法则,为本节课的学习做好铺垫。本节课的学习为下一课时进一步学习平方差公式以及今后学习因式分解都奠定了基础。

  二、说学情

  接下来谈谈学生的实际情况。七年级的学生已经具备了一定的观察归纳能力,能在教师引导下解决问题,因此教师要留给学生思考空间,注重对于学生的引导。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解并掌握平方差公式,能熟练运用公式进行正确计算。

  (二)过程与方法

  通过探索得出平方差公式的过程,发展归纳概括能力与符号意识;在应用过程中提升运算能力与分析、解决问题的能力。

  (三)情感、态度与价值观

  在学习活动中获得成功的体验,增强学习数学的兴趣与信心。

  四、说教学重难点

  在实现教学目标的过程中,教学重点是平方差公式,教学难点是平方差公式的'推导与正确应用。

  五、说教法和学法

  为了真正实现学生的主体地位,结合本节课的内容特点和学生的年龄特征,我将采用讲授法、练习法、自主探索等教学方法。

  六、说教学过程

  下面重点谈谈我对教学过程的设计。

  (一)导入新课

  考虑到平方差公式的探究基于整式乘法,课堂伊始我会带领学生回顾才学过的整式乘法,为本节课做好知识铺垫。然后说明本节课继续学习整式乘法中的一些特殊规律,顺势引出课题《平方差公式》。

  (二)讲解新知

初中数学说课稿15

  各位评委:早上好

  今天我说课的题目是____ ,这节课所选用的教材为北师大版义务教育课程标准八年级____教科书。

  一、 教材分析

  1、教材的地位和作用

  本节教材是初中数学____ 年级 册的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等

  知识奠定基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。

  2、学情分析

  学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情的分析,结合新课标对本节课的要求,我将本节课的重点确定为:

  难点确定为:

  二、 教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的'三维目标:

  1. 知识与技能目标:

  2. 过程与方法目标:

  3. 情感态度与价值目标:

  三、 教学方法分析

  本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就知,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.

  (7)当堂检测 对比反馈

  (8) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上是我对本节课的见解,不足之处敬请各位评委谅解 !

  谢谢!

【初中数学说课稿】相关文章:

初中数学的说课稿02-15

初中数学说课稿02-10

初中数学说课稿06-14

初中数学优秀说课稿05-24

数学说课稿初中12-16

【推荐】初中数学说课稿02-17

初中数学勾股定理说课稿02-18

初中数学说课稿范文03-21

初中的数学分式说课稿03-01

初中数学说课稿[合集]07-03