高中数学说课稿

时间:2024-06-13 18:00:00 说课稿 我要投稿

高中数学说课稿[精]

  作为一名教职工,总归要编写说课稿,说课稿有助于提高教师的语言表达能力。说课稿要怎么写呢?以下是小编精心整理的高中数学说课稿,欢迎阅读与收藏。

高中数学说课稿[精]

高中数学说课稿1

  一、教材分析:

  1、教材的地位与作用:

  线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

  2、教学重点与难点:

  重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。

  难点:在可行域内,用图解法准确求得线性规划问题的最优解。

  二、目标分析:

  在新课标让学生经历"学数学、做数学、用数学"的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。

  知识目标:

  1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行

  域和最优解等概念;

  2、理解线性规划问题的图解法;

  3、会利用图解法求线性目标函数的最优解.

  能力目标:

  1、在应用图解法解题的过程中培养学生的观察能力、理解能力。

  2、在变式训练的过程中,培养学生的分析能力、探索能力。

  3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。

  情感目标:

  1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。

  2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;

  3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

  三、过程分析:

  数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、变式演练,深入探究;5、运用新知,解决问题;6、归纳总结,巩固提高。

  1、创设情境,提出问题:

  在课堂教学的开始,我以一组生动的动画(配图片)描述出在神奇的数学王国里,有一种算法广泛应用于工农业、军事、交通运输、决策管理与规划等领域,应用它已节约了亿万财富,还被列为20世纪对科学发展和工程实践影响最大的十大算法之一。它为何有如此大的魅力?它又是怎样的一种神奇算法呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。

  接着我设置了一个具体的"问题"情境,即世界杯冠军意大利足球队(插图片)营养师布拉加经常遇到的这样一类营养调配问题:

  甲、乙、丙三种食物的维生素A、B的含量及成本如下表:

  甲

  乙

  丙

  维生素A(单位/千克)

  400

  600

  400

  维生素B(单位/千克)

  800

  200

  400

  成本(元/千克)

  7

  6

  5

  布拉加想购这三种食物共10千克,使之所含维生素A不少于4400单位,维生素B不少于4800单位,问三种食物各购多少时成本最低,最低成本是多少?

  同学们,你能为布拉加解决这个棘手的问题吗?

  首先将此实际问题转化为数学问题。我请学生完成这一过程如下:

  解:设所购甲、乙两种食物分别为x、y千克,则丙食物为10-x-y千克.

  由题意可知x、y应满足条件:

  即①

  又设成本为z元,则z=7x+6y+5(10-x-y)=2x+y+50.

  于是问题转化为:当x、y满足条件

  ①,求成本z=2xy50的最小值问题。

  【设计意图】数学是现实世界的反映。通过学生关注的热点问题引入,激发学生的兴趣,引发学生的思考,培养学生从实际问题抽象出数学模型的能力。

  2、分析问题,形成概念

  那么如何解决这个求最值的问题呢?这是本次课的难点。我让学生先自主探究,再分组讨论交流,在学生遇到困难时,我运用化归和数形结合的思想引导学生转化问题,突破难点:⑴学生基于上一课时的学习,讨论后一般都能意识到要将不等式组①表示成平面区域。(教师动画演示画不等式组①表示的平面区域。)于是问题转化为当点(x,y)在此平面区域内运动时,如何求z=2xy50的最小值的问题。⑵由于此问题难度较大,我试着这样引导学生:由于已将x,y所满足的条件几何化了,你能否也给式子z=2xy50作某种几何解释呢?学生很自然地想到要将等式z=2xy50视为关于x,y的一次方程,它在几何上表示直线。当z取不同的值时可得到一族平行直线。于是问题又转化为当这族直线与此平面区域有公共点时,如何求z的最小值。⑶这一问题相对于部分学生来说仍有一定的难度,于是我继续引导学生:如何更好地把握直线2xy50=z的几何特征呢?学生讨论交流后得出要将其改写成斜截式y=-2xz-50。至此,学生恍然大悟:原来z-50就是直线在y轴上的截距,当截距z-50最小时z也最小。于是问题又转化为当直线y=-2xz-50与平面区域有公共点时,在区域内找一个点P,使直线经过点P时在y轴上的截距最小。

  (紧接着我让学生动手实践,用作图法找到点P(3,2),求出z的`最小值为58,即最低成本为58元。)

  【设计意图】数学教学的核心是学生的再创造。让学生自主探究,体验数学知识的发生、发展的过程,体验转化和数形结合的思想方法,从而使学生更好地理解数学概念和方法,突出了重点,化解了难点。

  就在学生趣味盎然之际,我就此给出相关概念:

  不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称为线性约束条件。z=2xy50是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数。由于z=2xy50又是x、y的一次解析式,所以又叫做线性目标函数。

  一般的,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域。其中使目标函数取得最大值或最小值的可行解都叫做这个问题的最优解。象上述求解线性规划问题的方法叫图解法。

  由前面实际问题的解决自然地过渡到新概念的讲解,使得知识的衔接较为顺畅,概念的形成水到渠成。

  3、反思过程,提炼方法

  解题回顾是解题过程中重要又常被学生忽略的一个环节。我借用多媒体辅助教学,动态演示解题过程,引导学生归纳、提炼求解步骤:

  (1)画可行域--画出线性约束条件所确定的平面区域;

  (2)过原点作目标函数直线的平行直线l0;

  (3)平移直线l0,观察确定可行域内最优解的位置;

  (4)求最值--解有关方程组求出最优解,将最优解代入目标函数求最值。

  简记为画--作--移--求四步。

  4、变式演练,深入探究

  为了让学生更好地理解图解法求线性规划问题的内在规律,我在例1的基础上设计了例2和两个变式:

  例2.设z=2x-3y,式中变量x、y满足下列条件,求z的最大值和最小值。

  【设计意图】进一步强调目标函数直线的纵截距与z的最值之间的关系,有时并不是截距越大,z值越大。

  变式1.设z=axy,式中变量x、y满足下列条件,若目标函数z仅在点(5,2)处取到最大值,求a的取值范围。

  变式2.设z=axy,式中变量x、y满足下列条件,若使目标函数z取得最大值的最优解有无数个,求a的值。

  【设计意图】用已知有唯一(或无数)最优解时反过来确定目标函数某些字母系数的取值范围来训练学生从各个不同的侧面去理解图解法求最优解的实质,培养学生思维的发散性。

  (以上两个变式均让学生用几何画板进行实验,探求解决方法。并引导学生总结出:最优解一定位于多边形可行域的顶点或边界直线处。)

  5、运用新知,解决问题

  "学数学而不练,犹如入宝山而空返"。为了及时巩固知识,反馈教学信息,我安排了如下练习:

  练习1:教材p64练习第1题

  【设计意图】及时检验学生利用图解法解线性规划问题的情况。

  练习2:设z=2xy,式中变量x、y满足下

  列条件①,求z的最大值和最小值。

  (学生独立完成巩固性练习,老师投影有代表性的学生解答过程,给予积极性的评价,并强调注意点。同座同学间相互交流、批改和更正。)

  【设计意图】除了帮助学生巩固新学的知识,还能引导学生运用新知识,迅速清楚地发现以前用解不等式的知识错解此类题的原因。让学生再一次深刻体会到数形结合的妙处,同时又巩固了旧知识,完善了知识结构体系。

  6、归纳总结,巩固提高

  (1)归纳总结

  为使学生对所学的知识有一个完整而深刻的印象,我请学生从以下两方面自己小结。

  (1)这节课学习了哪些知识?

  (2)学到了哪些思考问题的方法?

  (学生回答)

  【设计意图】有利于学生养成及时总结的良好习惯,并将所学知识纳入已有的认知结构,同时也培养了学生数学交流和表达的能力。

  (2)巩固提高

  布置作业:

  1.阅读本节内容,完成课本P65习题7.4第2题

  2.思考题:设z=2x-y,式中变量x、y满足下列条件

  且变量x、y为整数,求z的最大值和最小值。

  【设计意图】让学生巩固所学内容并进行自我检测与评价,并为下一课时解决实际问题中的最优解是整数解的教学埋下伏笔。

  四、教法分析:

  鉴于我校高二学生已具有较好的数学基础知识和较强的分析问题、解决问题的能力,本节课我以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法。

  (1)设置"问题"情境,激发学生解决问题的欲望;

  (2)提供"观察、探索、交流"的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识。

  (3)利用多媒体辅助教学,直观生动地呈现图解法求最优解的过程,既加大课堂信息量,又提高了教学效率。

  (4)指导学生做到"四会":会疑;会议;会思;会变。在教学过程中,重视学生的探索经历和发现新知的体验,使学生形成自己对数学知识的理解和有效的学习策略。

  五、评价分析

  本节课我的设计理念遵循以下四条原则:以问题为载体;以学生为主体;以合作交流为手段;以能力提高为目的。重视概念的提取过程;知识的形成过程;解题的探索过程;情感的体验过程。学生通过自主探究、合作交流,体会合作学习的默契和谐,体会冥思苦想后的豁然开朗,体会逻辑思维的严谨美,体会一题多变的变幻美,体会数形结合的奇异美。

高中数学说课稿2

  一、说教材:

  1、地位、作用和特点:

  《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。

  本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以

  是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是

  特点之二是: 。

  教学目标:

  根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

  (1)知识目标:A、B、C

  (2)能力目标:A、B、C

  (3)德育目标:A、B

  教学的重点和难点:

  (1)教学重点:

  (2)教学难点:

  二、说教法:

  基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

  导入新课 新课教学

  反馈发展

  三、说学法:

  学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

  1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

  本节教师通过列举具体事例来进行分析,归纳出 ,并依

  据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。

  2、让学生亲自经历运用科学方法探索的过程。 主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授 时,可通过

  演示,创设探索 规律的情境,引导学生以可靠的`事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

  3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

  4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

  四、教学过程:

  (一)、课题引入:

  教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

  (二)、新课教学:

  1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

  2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

  (三)、实施反馈:

  1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

  2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

  五、板书设计:

  在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

  六、说课综述:

  以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对

  的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

  总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学说课稿3

  一、教材分析

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

  二、教学目标

  1、学习目标

  (1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属

  于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  2、能力目标

  (1)能够把一句话一个事件用集合的方式表示出来。

  (2)准确理解集合与及集合内的元素之间的关系。

  3、情感目标

  通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。

  三、教学重点与难点

  重点 集合的基本概念与表示方法;

  难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

  四、教学方法

  (1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

  (2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

  五、学习方法

  (1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,

  教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。

  (2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培

  优扶差,满足不同。”

  六、教学思路

  具体的思路如下

  复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。

  一、 引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  二、 正体部分

  学生阅读教材,并思考下列问题:

  (1)集合有那些概念?

  (2)集合有那些符号?

  (3)集合中元素的特性是什么?

  (4)如何给集合分类?

  (一)集合的有关概念

  (1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,

  都可以称作对象.

  (2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由

  这些对象的全体构成的集合.

  (3)元素:集合中每个对象叫做这个集合的元素.

  集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??

  1. 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,

  对学生的例子予以讨论、点评,进而讲解下面的问题。

  2、元素与集合的关系

  (1)属于:如果a是集合A的.元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A

  要注意“∈”的方向,不能把a∈A颠倒过来写. (举例)

  集合A={3,4,6,9}a=2 因此我们知道a?A

  3、集合中元素的特性

  (1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.

  (2)互异性:集合中的元素一定是不同的.

  (3)无序性:集合中的元素没有固定的顺序.

  4、集合分类

  根据集合所含元素个属不同,可把集合分为如下几类:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限个元素的集合叫做有限集

  (3)含有无穷个元素的集合叫做无限集

  注:应区分?,{?},{0},0等符号的含义

  5、常用数集及其表示方法

  (1)非负整数集(自然数集):全体非负整数的集合.记作N

  (2)正整数集:非负整数集内排除0的集.记作N*或N+

  (3)整数集:全体整数的集合.记作Z

  (4)有理数集:全体有理数的集合.记作Q

  (5)实数集:全体实数的集合.记作R

  注:(1)自然数集包括数0.

  (2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排

  除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(课本例1)

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(课本例2)

  说明:(课本P5最后一段)

  思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (三)课堂练习(课本P6练习)

  三、 归纳小结与作业

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  书面作业:习题1.1,第1- 4题

高中数学说课稿4

  一.说教材

  1.1 教材结构与内容简析

  本节课为《江苏省中等职业学校试用教材数学(第二册)》5.6函数图象的定位作图法的第一课时,主要内容为基本函数 与一般函数 间的图象平移变换规律。

  函数图象的平移,既是前阶段函数性质及具体函数研究的延续和深化,也是后阶段定位作图法以至解析几何中移轴化简的基础和渗透,在教材中起着重要的承上启下作用。更为重要的是,这段内容还蕴涵着重要的数学思想方法,如化归思想、映射与对应思想、换元方法等。

  1.2 教学目标

  1.2.1知识目标

  ⑴、给定平移前后函数解析式,能熟练叙述相应的平移变换,正确掌握平移方向与 、 符号的关系。

  ⑵、能较熟练地化简较复杂的函数解析式,找出对应的基本函数模型(如一次函数,反比例函数、指数函数等)。

  ⑶、初步学会应用平移变换规律研究较复杂的函数的具体性质(如值域、单调性等)。

  1.2.2能力目标

  ⑴、在数学实验平台上,能自主探究,改变相应参数和函数解析式,观察相应图象变化,经历命题探索发现的过程,提高观察、归纳、概括能力。

  ⑵、结合学习中发现的问题,学会借助于数学软件等工具研究、探索和解决问题,学会数学

  地解决问题。

  ⑶、渗透数学思想与方法(如化归、映射的思想,换元的方法)的学习,发展学生的非逻辑思维能力(合情推理、直觉等)。

  1.2.3情感目标

  培养学生积极参与、合作交流的主体意识,在知识的探索和发现的过程中,使学生感受数学学习的意义,改善学生的数学学习信念(态度、兴趣等)。

  1.3 教材重点和难点处理思路

  重点:函数图象的平移变换规律及应用

  难点:经历数学实验方法探索平移对函数解析式的影响及如何利用平移变换规律化简函数解析式、研究复杂函数

  教材在这段内容的处理上,注重直观性背景,注重学生丰富感性知识的获得,淡化形式化的逻辑推导和形式化的结果即平移公式。实际教学中,我们发现如果学生不经受足够的亲身体验而简单的记住结论的话,往往很难在形式化的解析式与具体的图象平移之间建立联系,并且移轴与移图象之间也容易搞混,说明这段内容不能采取简单的“告诉”方式,须让学生自主发现命题、发现规律,让他们“知其然,更要知其所以然。”

  为了突出重点、突破难点,在教学中采取了以下策略:

  ⑴、从学生已有知识出发,精心设计一些适合学生学力的数学实验平台,分层次逐步引导学生观察图象的平移方向与函数解析式中 、 符号的关系,抽象、归纳出平移变换规律。 ⑵、创设情境,引发学生认知冲突,激发学生求知欲,能借助于数学软件多角度积极探求错误原因,使学生认识到形如 的函数须提取 前的系数化为 的形式,从而真正认识解析式形式化的特点。

  ⑶、数学实验采取小组合作研究共同完成简单实验报告的形式,通过学生的自主探究、合作交流,从而实现对平移变换规律知识的建构。

  二.说教法

  针对职高一年级学生的认知特点和心理特征,在遵循启发式教学原则的基础上,本节课我主要采取以实验发现法为主,以讨论法、练习法为辅的教学方法,引导学生通过实验手段,从直观、想象到发现、猜想,亲历数学知识建构过程,体验数学发现的喜悦。

  本节课的设计一方面重视学生数学学习过程是活动的过程,因此不是按照已形式化了的现成的数学规则去操作数学,而是采取数学实验的'方式,使学生有机会经受足够的亲身体验,亲历知识的自主建构过程;使学生学会从具体情境中提取适当的概念,从观察到的实例中进行概括,进行合理的数学猜想与数学验证,并作更高层次的数学概括与抽象;从而学会数学地思考。

  另一方面,注重创设机会使学生有机会看到数学的全貌,体会数学的全过程。整堂课的设计围绕研究较复杂函数的性质展开,以问题“函数 的性质如何”为主线,既让学生清楚研究函数图象平移的必要性,明确学习目标,又让学生初步学会如何应用规律解决问题,体会知识的价值,增强求知欲。

  总之,本节课采用数学实验发现教学,学生采取小组合作的形式自主探究;利用实物投影进行集体交流,及时反馈相关信息。

  三.说学法

  “学之道在于悟,教之道在于度。”学生是学习的主体,教师在教学过程中须将学习的主动权交给学生。

  美国某大学有一句名言:“让我听见的,我会忘记;让我看见的,我就领会了;让我做过的,我就理解了。”通过学生的自主实验,在探索新知的经历和获得新知的体验的基础之上,真正正确掌握平移方向。

  教师的“教”不仅要让学生“学会知识”,更主要的是要让学生“会学知识”。正如荷兰数学教育家弗赖登塔尔所指出,“数学知识既不是教出来的,也不是学出来的,而是研究出来的。”本节课的教学中创设利于学生发现数学的实验情境,让学生自主地“做数学”,将传统意义下的“学习”数学改变为“研究”数学。从而,使传授知识与培养能力融为一体,在转变学习方式的同时学会数学地思考。

  四.说程序

  4.1创设情境,引入课题

  在简要回顾前面研究的具体函数(指数函数、幂函数、三角函数等)性质后,提出问题“如何研究 的性质?”

  引导学生讨论后,总结出两种思路,即:思路1、通过描点法作出函数的图象,借助于图象研究相关性质;思路2、将 的性质问题化归为 的问题,借助于基本函数 的性质解决新问题。

  从而自然地引出课题,关键是找出 与 的关系,尤其是图象间的联系。更一般地,就是基本函数 与 间的联系。

  4.2数学实验,自主探索

  这一环节主要分两阶段。

  1、尝试初探

  引例、函数 与 图象间的关系

  这一阶段主要由教师讲解,学生观察发现,意在突出两函数图象形状相同、位置不同,后者可以由前者平移得到。

  讲解时,利用几何画板的度量功能,给出两个对应点的坐标,易于学生发现点的坐标关系,并给出相应的辅助线,一方面便于学生发现规律,另一方面也是为后面定位作图法的学习作好铺垫。

  2、实验发现

  本阶段由学生以小组合作探索的形式完成,通过填写实验报告的形式完成探索规律的任务。 实验1、试改变实验平台1中的参数 、 ,观察由 的图象到 的变换现象,依照给出的样例填写下表,并总结其中的平移变换规律。

  函数 解析式平移变换规律12向左平移2个单位,向上平移1个单位 实验结论

高中数学说课稿5

  一、教材分析

  本节是人教A版高中数学必修三第二章《统计》中的第三节 “变量间的相关关系” 的第二课时。在上一课时,学生已经懂得根据两个相关变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想。

  从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是本章内容的难点之一。线性回归是最简单的回归分析,学好回归分析是学好统计学的重要基础。

  二、教学目标

  根据课标的要求及前面的分析,结合高二学生的认知特点确定本节课的教学目标如下:

  知识与技能:

  1. 知道最小二乘法和回归分析的思想;

  2. 能根据线性回归方程系数公式求出回归方程

  过程与方法:

  经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识。

  情感态度与价值观

  通过合作学习,养成倾听别人意见和建议的良好品质

  三、重点难点分析:

  根据目标分析,确定教学重点和难点如下:

  教学重点:

  1. 知道最小二乘法和回归分析的思想;

  2.会求回归直线

  教学难点:

  建立回归思想,会求回归直线

  四、教学设计

  提出问题

  理论探究

  验证结论

  小结提升

  应用实践

  作业设计

  教学环节

  内容及说明

  创设情境

  探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:

  问题与引导设计

  师生活动

  设计意图

  问题1. 利用图形计算器作出散点图,并指出上面的两个变量是正相关还是负相关?

  教师提问,学生

  通过动手操作得

  出散点图并回答

  以旧“探”新:对旧的知识进行简要的提问复习,为本节课学生能够更好的建构新的知识做好充分的准备;尤其为一些后进生能够顺利的完成本节课的内容提供必要的基础。

  教师引导:通过上节课的学习,我们知道散点图是研究两个变量相关关系的一种重要手段。下面,请同学们根据得出的散点图,思考下面的问题2.

  问题2. 甲同学判断某人年龄在65岁时体内脂肪含量百分比可能为34,乙同学判断可能为25,而丙同学则判断可能为37,你对甲,

  乙,丙三个同学的判断有什么看法?

  学生能够表达自己的看法。有的学生可能会认为乙同学的.判断是错误的;有的学生可能认为甲乙丙三个同学的判断都是对的,答案不唯一

  该问题具有探究性、启发性和开放性。鼓励学生大胆表达自己的看法。通过设计该问题,引导学生自己发现问题,注意到散点图中点的分布具有一定规律,体会观测点与回归直线的关系;进而引起学生的对本节课内容的兴趣。

  问题3. 反思问题,你还可以提出哪些问题吗?小组讨论,看哪个小组提出的问题多

  在小组讨论的形式下和比较哪个小组提出的问题多,学生之间会充分的进行交流,提出问题

  通过小组讨论比较,调动学生的学习积极性和兴趣,活跃课堂气氛,达到学生自己提出问题的效果,培养学生的学生创新思维和问题意识。

  学生可能提出的问题:

  ①为什么甲、丙同学的判断结果正确的可能性较大,而乙同学判断结果正确的可能性较小?

  ②某人年龄在65岁时体内脂肪含量百分比最可能是多少?在其它年龄时呢?

  ③这些样本数据揭示出两个相关变量之间怎样的关系呢?

  ④怎样用数学的方法研究变量之间的相关关系呢?每个问题都是学生“火热的思考”成果

高中数学说课稿6

尊敬的各位考官:

  大家好,我是今天的X号考生,今天我说课的题目是《正弦函数、余弦函数的图象》。

  新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。在正式内容开始之前,我要先谈一谈对教材的理解。

  《正弦函数、余弦函数的图象》是人教A版必修4第一章第四节第一小节的内容,其主要内容是正弦函数、余弦函数图象。此前学习了诱导公式和任意角的正弦函数以及正弦线,在此基础上来学习正弦函数、余弦函数的图象相对比较简单。本节课的学习为以后利用图象学习正弦函数、余弦函数的性质以及函数

  的图象打好基础,起到承前启后的作用。因此本节的学习有着极其重要的地位。

  二、说学情

  合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。

  这一阶段的学生已经具备了一定的分析和类比的能力,且在知识方面也有了一定的积累。所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解利用单位圆以及正弦线画正弦函数的图象的方法;会用“五点作图法”画正余弦函数的图象。

  (二)过程与方法

  通过独立思考以及小组讨论的过程,提高合作意识,深化数形结合思想。

  (三)情感、态度与价值观

  由实验过程感受数学与生活的联系;体会数学中的图形美,提高对数学的喜爱。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的'确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点为:正弦函数、余弦函数的图象。难点:利用正弦线转画出正弦函数图象。

  五、说教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、启发法、练习法、小组合作、自主探究等教学方法。

  六、说教学过程

  在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

  (一)导入新课

  首先是导入环节,直接讲解正弦函数与余弦函数的概念。然后提问:之前研究函数时都研究了函数的哪些性质?在学生充分回顾之后,引出研究正弦函数、余弦函数的图象。

  通过温故知新的导入方式,为本节课后续的教学做好铺垫。

  (二)探索新知

  接下来是新课讲授环节。我将分为四部分,分别为“简谐运动”实验的探究、正弦函数的图象、余弦函数的图象、五点作图法。

  首先是“简谐运动”实验的探究。组织学生动手做一做章头图表示的“简谐运动”实验。指导学生将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成一个简易单摆。在漏斗下方放一块纸板,板的中间画一条直线作为坐标系的横轴。把漏斗灌上沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板,这样就可在纸板上得到一条曲线,它就是简谐运动的图象。通过学生的试验,展示试验结果图象。让学生对正弦曲线和余弦曲线有一个初步印象。

  接下来是正弦函数图象的探究。通过之前三角函数相关知识的学习,先和学生共同明确继续在单位圆中研究正弦函数的图象。提问如下两个问题:如何在单位圆中研究正弦函数y=sinx的变化规律?如何利用正弦线的变化规律画出正弦函数的图象?

高中数学说课稿7

尊敬的各位考官:

  大家好!

  我是今天的x号考生,今天我说课的题目是《直线与平面平行的判定》。

  高中数学课程以学生发展为本,提升数学学科核心素养。这节课我将秉承这一教学理念,从教材分析、教学目标、教学过程等几个方面来展开我的说课。

  一、说教材

  本节课选自人教A版高中数学必修2第二章第2节。此前学生对空间立体几何已经有了一定的感知。通过本节课的学习,能使学生进一步了解空间中直线与平面平行关系的判定方法,培养学生的逻辑思维和空间想象能力。

  二、说学情

  学生已经学习了空间中点、直线、平面间的位置关系,知道若直线与平面平行,则没有公共点,但直接利用定义无法进行判断。因而我会注意在教学时逐步引导学生,在辩证思考中探索直线与平面平行的条件。

  三、说教学目标

  根据以上对教材的分析和对学情的把握,我设置本节课的教学目标如下:

  (一)知识与技能

  掌握直线与平面平行的判定定理,会用文字语言、符号语言和图形语言描述判定定理,并会进行简单应用。

  (二)过程与方法

  通过直观感知、观察、操作确认的`认知过程,培养空间想象力和逻辑思维能力,体会“降维”的思想。

  (三)情感、态度与价值观

  通过生活中的实例,体会平行关系在生活中的广泛应用;在探究线面平行判定定理的过程中,形成学习数学的积极态度。

  四、说教学重难点

  根据学生现有的知识储备和知识本身的难易程度,我设置本节课教学重点为:直线与平面平行的判定定理。教学难点为:直线与平面平行的判定定理的探究。

  五、说教法和学法

  为达成教学目标,突破教学重难点,本节课我将采用讲授法、自主探究法、练习法等教学方法,以达到教与学的和谐完美统一。

  六、说教学过程

  下面我将重点谈谈我的教学过程。

  (一)引入新课

  导入环节我会带领学生从文字语言、图形语言和符号语言这三个角度复习直线与平面有哪些位置关系。接着我会请学生思考,该如何判定直线与平面平行。根据定义,只需判定直线与平面没有公共点即可。但直线无限伸长,平面无限延展,如何保证直线与平面无公共点。由此引发认知冲突,引入本节课的学习。

  通过复习导入,不仅巩固了之前所学,建立起新旧知识之间的联系,而且能够有效激发起学生的学习兴趣,从而为下面的学习打好基础。

  (二)讲解新知

  接下来是新知讲解环节。

  我会请学生观察,教室门扇的两边是平行的,当门扇绕着一边转动时,观察门扇转动的一边和门框所在平面有怎样的位置关系。并组织学生动手操作,将书本平放在桌面上,翻动书的封面,封面边缘所在直线与桌面所在平面具有什么样的位置关系。

  学生不难看出其中的平行关系。在此基础上,我会请学生同桌两人交流讨论,如果直线与平面平行,则这条直线与平面内多少条直线平行。如果这条直线平行于平面内的无数条直线,那么这条直线是否一定与这个平面平行。

  (三)课堂练习

  除了知道知识,学生还要能对知识进行应用。我会出示以下练习题:求证空间四边形相邻两边中点的连线平行于另外两边所在的平面。结合这一练习题,我会进一步强调,线面平行问题可转化为线线平行问题。这也为之后线面、面面关系的学习奠定基础。

  (四)小结作业

  课堂小结部分,我会充分发挥学生的主体性,请学生说一说本节课的收获。收获不仅仅只是知识方面,也可以说一说这节课学到的思想方法等,进一步培养学生的综合素质。

  课后作业我会请学生完成书上相应练习题,使学生在课后也能得到思考,夯实学生对于新知的掌握。

  七、说板书设计

  我的板书设计遵循简洁明了、突出重点的原则,以下是我的板书设计:

  略。

高中数学说课稿8

  一、教材分析:

  1、教材的地位与作用。

  本节资料是在学生学习了"事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。"用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。

  在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下头学习求比较复杂的情景的概率打下基础。

  2、重点与难点。

  重点:对概率意义的.理解,经过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。

  难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。

  二、目的分析:

  知识与技能:掌握用频率预测概率和用列举法求概率方法。

  过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

  情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。

  三、教法、学法分析:

  引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现"教"为"学"服务这一宗旨。

  四、教学过程分析:

  1、引导学生探究

  精心设计问题一,学生经过对问题一的探究,一方面复习前面学过的"确定事件和不确定事件"的知识,为学好本节资料理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。

  2、归纳概括

  学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的由来。

  引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题本事,又让学生明确用列举法求概率这一简便快捷方法的合理性。

  3、举例应用

  ⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。

  ⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。

  4、深化发展

  ⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。

  ⑵让学生设计活动资料,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新本事。

高中数学说课稿9

各位评委,老师们:

  大家好!

  很高兴参加这次说课活动.这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导.希望各位评委和老师们对我的说课内容提出宝贵意见.

  我说课的内容是<平面向量>的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本-必修)<数学>第一册下,教学内容为第96页至98页第五章第一节.本校是浙江省一级重点中学,学生基础相对较好.我在进行教学设计时,也充分考虑到了这一点.

  下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想.

  一教材分析

  (1)地位和作用

  向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系.向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.

  平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习.为学习向量的知识体系奠定了知识和方法基础.

  (2)教学结构的调整

  课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别.然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念.为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程.在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成.

  (3)重点,难点,关键

  由于本节课是本章内容的第一节课,是学生学习本章的基础.为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向.所以向量,相等向量的概念,向量的几何表示是这节课的重点.本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点.而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解.

  二教学目标的确定

  根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

  (1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量.会根据图形判定向量是否平行,共线,相等.

  (2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

  (3)情感目标:让学生在民主、和谐的'共同活动中感受学习的乐趣。

  三教学方法的选择

  Ⅰ教学方法

  本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:

  (1)由教材的特点确立类比思维为教学的主线.

  从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似.因此在教学中运用类比作为思维的主线进行教学.让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程.

  (2)由学生的特点确立自主探索式的学习方法

  通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究.将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用.

  Ⅱ教学手段

  本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学.多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破.

  四教学过程的设计

  Ⅰ知识引入阶段---提出学习课题,明确学习目标

  (1) 创设情境——引入概念

  数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等.这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣.

  (2) 观察归纳——形成概念

  由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度.明确知道了有向线段的起点,方向和长度,它的终点就唯一确定.再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

  (3) 讨论研究——深化概念

  在得到概念后进行归纳,深化,之后向学生提出以下三个问题:

  ①向量的要素是什么?

  ②向量之间能否比较大小?

  ③向量与数量的区别是什么?

  同时指出这就是本节课我们要研究和学习的主题.

  Ⅱ知识探索阶段---探索平面向量的平行向量.相等向量等概念

  (1) 总结反思——提高认识

  方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件.

  (2)即时训练—巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

高中数学说课稿10

  1.教材分析

  1-1教学内容及包含的知识点

  (1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容

  (2)包含知识点:点到直线的距离公式和两平行线的距离公式

  1-2教材所处地位、作用和前后联系

  本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。

  可见,本课有承前启后的作用。

  1-3教学大纲要求

  掌握点到直线的距离公式

  1-4高考大纲要求及在高考中的显示形式

  掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。

  1-5教学目标及确定依据

  教学目标

  (1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。

  (2)培养学生探究性思维方法和由特殊到一般的研究能力。

  (3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。

  (4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。

  确定依据:

  中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(20xx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(20xx年)

  1-6教学重点、难点、关键

  (1)重点:点到直线的距离公式

  确定依据:由本节在教材中的地位确定

  (2)难点:点到直线的距离公式的推导

  确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。

  分析“尝试性题组”解题思路可突破难点

  (3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的.距离。

  2.教法

  2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。

  确定依据:

  (1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。

  (2)事物之间相互联系,相互转化的辩证法思想。

  2-2教具:多媒体和黑板等传统教具

  3.学法

  3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。

  一句话:还课堂以生命力,还学生以活力。

  3-2学情:

  (1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。

  (2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。

  (3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。

  3-3学具:直尺、三角板

  3. 教学程序

  时,此时又怎样求点A到直线

  的距离呢?

  生: 定性回答

  点明课题,使学生明确学习目标。

  创设“不愤不启,不悱不发”的学习情景。

  练习

  比较

  发现

  归纳

  讨论

  的距离为d

  (1) A(2,4),

  :x = 3, d=_____

  (2) A(2,4),

  :y = 3,d=_____

  (3) A(2,4),

  :x – y = 0,d=_____

  尝试性题组告诉学生下手不难,还负责特例检验,从而增强学生参与的信心。

  请三个同学上黑板板演

  师: 请这三位同学分别说说自己的解题思路。

  生: 回答

  教学机智:应沉淀为三种思路:一,根据定义转化为定点到垂足的距离;二,利用等积法转化为直角三角形中三个顶点之间的距离;三,利用直角三角形中的边角关系。

  视回答的情况,老师进行肯定、修正或补充提问:“还有其他不同的思路吗”。

  说解题思路,一是让学生清晰有条理的表达自己的思考过程,二是其求解过程提示了证明的途径(根据定义或画坐标线时正好交出一个直角三角形)

  师:很好,刚才我们解决了定点到特殊直线的距离问题,那么,点P(x0,y0)到一般直线

  :Ax+By+C=0(A,B≠0)的距离又怎样求?

  教学机智:如学生反应不大,则补充提问:上面三个题的解题思路对这个问题有启示吗?

  生:方案一:根据定义

  方案二:根据等积法

  方案三: ......

  设置此问,一是使学生的认知由特殊向一般转化,发现可能的方法,二是让学生体验数学活动充满着探索和创造,感受数学的生机和乐趣。

  师生一起进行比较,锁定方案二进行推证。

  “师生共作”体现新型师生观,且//时,又怎样求这两线的距离?

  生:计算得线线距离公式

  师:板书点到直线的距离公式,两平行线间距离公式

  “没有新知识,新知识均是旧知识的组合”,创设此问可发挥学生的创造性,增加学生的成就感。

  反思小结

  经验共享

  (六 分 钟)

  师: 通过以上的学习,你有哪些收获?(知识,能力,情感)。有哪些疑问?谁能答这些疑问?

  生: 讨论,回答。

  对本节课用到的技能,数学思维方法等进行小结,使学生对本节知识有一个整体的认识。

  共同进步,各取所长。

  练习

  (五 分 钟)

  P53 练习 1, 2,3

  熟练的用公式来求点线距离和线线距离。

  再度延伸

  (一 分 钟)

  探索其他推导方法

  “带着问题进课堂,带着更多的问题出课堂”,让学生真正学会学习。

  4. 教学评价

  学生完成反思性学习报告,书写要求:

  (1) 整理知识结构

  (2) 总结所学到的基本知识,技能和数学思想方法

  (3) 总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因

  (4) 谈谈你对老师教法的建议和要求。

  作用:

  (1) 通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。

  (2) 报告的写作本身就是一种创造性活动。

  (3) 及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。

  5. 板书设计

  (略)

  6. 教学的反思总结

  心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。

高中数学说课稿11

  各位老师:

  今天我说课的题目是《条件语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  在此之前,学生已学习了算法的概念、程序框图与算法的基本逻辑结构、输入语句、输出语句和赋值语句,这为过渡到本节的学习起着铺垫作用。这一节课主要的内容为条件语句表示方法、结构以及用法。条件语句与程序图中的条件结构相对应,它是五种基本算法语句中的一种,。通过本节课的学习,学生将更加了解算法语句,并能用更全面的眼光看待前面学过的语句,并为以后的学习作好必要的准备。本节课对学生算法语言能力、有条理的思考与清晰地表达的能力,逻辑思维能力的综合提升具有重要作用。

  2.教学的重点和难点

  重点:条件语句的表示方法、结构和用法;用条件语句表示算法。

  难点:理解条件语句的表示方法、结构和用法。

  二、教学目标分析

  1.知识与技能目标:

  ⑴正确理解条件语句的概念,并掌握其结构。

  ⑵会应用条件语句编写程序。

  2.过程与方法目标:

  ⑴通过实例,发展对解决具体问题的过程与步骤进行分析的能力。

  ⑵通过模仿,操作、探索、经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力。

  ⑶在解决具体问题的过程中学习条件语句,感受算法的重要意义。

  3.情感,态度和价值观目标

  ⑴能通过具体实例,感受和体会算法思想在解决具体问题中的意义,进一步体会算法思想的重要性,体验算法的有效性,增进对数学的了解,形成良好的数学学习情感,增强学习数学的乐趣。

  ⑵通过感受和认识现代信息技术在解决数学问题中的重要作用和威力,形成自觉地将数学理论和现代信息技术结合的思想。

  ⑶在编写程序解决问题的过程中,逐步养成扎实严谨的科学态度。

  三、教学方法与手段分析

  1.教学方法:根据本节内容逻辑性强,学生不易理解的特点,本节教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这种方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

  2.教学手段:运用计算机、图形计算器辅助教学

  四、教学过程分析

  1.创设情境(约4分钟)

  首先,我要求学生们编写程序,输入一元二次方程

  的系数,输出它的实数根。这样可以把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,因为要解决这一问题,根据我们之前所学的三种算法语句是无法解决的,这样就引出今天我们所要学习的内容。

  2.探究新知(约8分钟)

  为了引入概念,我首先给出了一个基本的应用条件语句能够解决的例题:

  例1 编写一个程序,求实数x的绝对值。

  整个过程由师生共同分析完成。老师要引导学生分析、研究例题中的两个程序,既要让学生们看到已知的三种语句,更要注意到未知的语句,即条件语句。总结上述例题的程序可得出条件语句的两种一般格式,接下来由师生共同对这两种格式进行研究.

  3.知识应用(约15分钟)

  此环节有两个例题

  例2 编写程序,写出输入两个数a和b,将较大的数打印出来

  例3 编写程序,使任意输入的3个整数按从大到小的.顺序输出.

  先把解决问题的思路用程序框图表示出来,然后再根据程序框图给出的算法步骤,逐步把算法用对应的程序语句表达出来。(程序框图先由学生讨论,再统一,然后利用图形计算器演示,学生会惊喜的发现:自己也是个编程高手了!这样可以激发学生们的学习兴趣)

  4.练习巩固(约4分钟)

  课本第30页第3题

  练习可巩固学生对知识的理解,也可在练习中发现问题,使问题得到及时的解决。

  5.课堂小结(约5分钟)

  条件语句的步骤、结构及功能.

  知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用

  6.布置作业

  课本练习第3、4题

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。

  7.板书设计

  1.2.2条件语句

  1、条件语句的一般格式

  (1)IF-THEN-ELSE语句

  格式: 框图:

  (2)IF-THEN语句

  格式: 框图:

  2、小结

  (1)

  (2)

  (3)

  2、例1 引例

  例2 例4

  例3

  

高中数学说课稿12

  尊敬的各位专家、评委:

  下午好!

  我的抽签序号是____,今天我说课的课题是《_______》第__课时。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

  一、教材分析

  (一)地位与作用

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  (二)学情分析

  (1)学生已熟练掌握_________________。

  (2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

  (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

  (4) 学生层次参次不齐,个体差异比较明显。

  二、目标分析

  新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

  (一)教学目标

  (1)知识与技能

  使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

  (2)过程与方法

  引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度与价值观

  在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  (二)重点难点

  本节课的教学重点是________________________,教学难点是_____________________。

  三、教法、学法分析

  (一)教法

  基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

  2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

  (二)学法

  在学法上我重视了:

  1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

  2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

  四、教学过程分析

  (一)教学过程设计

  教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的.和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

  (1)创设情境,提出问题。

  新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

  (2)引导探究,建构概念。

  数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.

  (3)自我尝试,初步应用。

  有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

  (4)当堂训练,巩固深化。

  通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

  (5)小结归纳,回顾反思。

  小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

  (二)作业设计

  作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本

  节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

  我设计了以下作业:

  (1)必做题

  (2)选做题

  (三)板书设计

  板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢!

高中数学说课稿13

  教学目标

  依据教学大纲、考试说明及学生的实际认知情况,设计目标如下:

  1、知识与技能:

  (1)了解互为反函数的函数图像间的关系,并能利用这一关系,由已知函数的图像作出反函数的图像。

  (2)通过由特殊到一般的归纳,培养学生探索问题的能力。

  2、过程与方法:由特殊事例出发,由教师引导,学生主动探索得出互为反函数的函数图像间的关系,使学生探索知识的形成过程,本可采用自主探索,引导发现,直观演示等教学方法,同时渗透数形结合思想。

  3、情感态度价值观:通过图像的对称变换是学生该授数学的对称美和谐美,激发学生的学习兴趣。

  重点难点

  根据教学目标,应有一个让学生参与实践,发现规律,总结特点、归纳方法的探索认知过程。特确定:

  重点:互为反函数的函数图像间的关系。

  难点:发现数学规律。

  教学结构

  教学过程设计

  创设情景,引入新课

  1、复习提问反函数的概念。

  〇学生活动学生回答,教师总结

  (1)用y表示x

  (2)把y当自变量还是函数

  提出问题,探究问题

  一、画出y=3x-2的图像,并求出反函数。

  ●引导设问1原函数中的自变量与函数值和反函数中的自变量函数值什么关系?

  〇学生活动学生很容易回答

  原函数y=3x-2中反函数中

  y:函数x:自变量x:函数y:自变量

  ●引导设问2在原函数定义域内任给定一个都有唯一的一个与之对应,即在原函数图像上,那么哪一点在反函数图像上?

  〇学因为=3-2成立,所以成立即(,)在反函数图像上。

  ●引导设问3若连结BG,则BG与y=x什么关系?点B与点G什么关系?为什么?点B再换一个位置行吗?

  〇学生活动学生根据图形很容易得出y=x垂直平分BG,点B与点G关于y=x对称。学生证法可能有OB=OG,BD=GD等。

  ▲教师引导教师用几何花板,就上面的问题追随学生的思路演示当在y=3x-2图像变化时(,)也随之变化但始终有两点关于y=x对称。

  ●引导设问4若不求反函数,你能画出y=3x-2的反函数的图像吗?怎么画?

  〇学生活动有了前面的铺垫学生很容易想到只要找出点G的两个位置便可以画出反函数的图像。

  ●引导设问5上题中原函数与反函数的图像,这两条直线什么关系?

  〇学生活动由前面容易得出(关于y=x对称)

  ●引导设问6若把当作原函数的图像,那么它的反函数图像是谁?

  〇学生活动由图中可以看出关于y=x相互对称所以他的反函数图像应是,另外由上节课原函数与反函数互为反函数也可得。

  ●引导设问7以上是一个特殊的函数,图像为直线,若对一个一般的函数图像你能根据上题的原理画出反函数的图像吗?如图是的图像,请你猜想出它的反函数图像。

  〇学生活动由上题学生不难得出做y=x的对称图像(教师配合动画演示)

  ●引导设问8通过上面的两个问题我们可以得出原函数图像与反函数图像有什么关系?

  ▲学生总结,教师补充结论

  (1)一个函数若存在反函数则原函数和反函数的图像关于y=x这条直线对称。

  (2)一个函数若存在反函数则这两个函数许违反寒暑,若把其中一个图像当作原函数图像则另一个图象便是反函数图像。

  习题精炼,深化概念

  ●引导设问9根据图像判断函数有没有反函数?为什么?对自变量加上什么条件才能有反函数?

  〇学生活动学生从图中可以发现在原函数中可以有两个不等的自变量与同一个y相对应,当我们用y表示x后,对一个y会有两个x与之对应,所以应加上自变量的范围,使得原函数是从定义域到值域的一一映射。如:加上x>0;x

  ●引导设问10什么样的函数具有反函数?

  ▲教师引导学生总结如果一个函数图像关于y=x对称后还能成为一个函数的图像,那么这个函数就有反函数,这个图像就是反函数的图像。这与反函数定义相对应。即定义域到值域的一一映射,这样的函数具有反函数,而单调函数具备这个特点,所以单调函数一定有反函数。

  ●引导设问11通过上图我们发现保留图像的单调增(减)的部分,那么它的反函数也为单调增(减)的。在看一下前面的几个例子你能得到什么样的结论?

  〇学生活动通过观察学生容易得到"单调函数的反函数与原函数的单调性一致"然后教师进一步追问为什么?(由前面我们知道若一个函数存在反函数则x与y之间是一个对一个的关系,而原函数是增函数即x越大y也越大,当然y越大x也越大。)

  ●引导设问12由图中原函数的'图像作出反函数的图像,并回答原函数的定义域值域与反函数的定义域值域有什么关系?

  〇学生活动由上面结论很容易做出通过图形的样式使学生进一步认识到原函数的定义域值域是反函数的值域定义域。

  总结反思,纳入系统:

  内容总结:

  1、在原函数图像上,那么(,)在反函数图像上。

  2、与(,)关于y=x对称。

  3、原函数和反函数的图像关于y=x这条直线对称。

  思想总结:

  由特殊到一般的思想,数形结合的思想

  布置作业,承上启下

  ●说明:教材中对反函数(第二课时:互为反函数的函数图像间的关系)的处理是通过画几个特殊的函数图像得出一般结论的。我认为这样处理虽然可以使学生得出并记住这个结论,但学生对这个结论理解并不深刻。这样处理也不利于培养学生严密的数学思维。而我对这节课的处理是在不增加教材难度的情况下(不严密证明)利用在原函数图像上,那么(,)在反函数图像上这一性质,从图形上充分研究与(,)的关系。经讨论研究可得出结论"与(,)关于y=x对称"。进而通过任意点的对称得出原函数和反函数的图像关于y=x这条直线对称,另外利用任意点来研究图像也是以后数学中经常用到的方法。具体操作大致如下:首先请学生画出y=3x-2的图像,并求出反函数,然后提出问题1:原函数中的自变量与函数值和反函数中的自变量函数值什么关系?学生很容易得出原函数与反函数中的自变量,函数值正好对调即:原函数y=3x-2中y:函数x:自变量,反函数中x:函数y:自变量。问题2:在原函数定义域内任给定一个都有唯一的一个与之对应,即在原函数图像上,那么哪一点在反函数图像上?对于这个问题有了上题的铺垫,学生不难得出(,)在反函数图像上。问题3:若连结B,G(,),则BG与y=x什么关系?点B与点G什么关系?为什么?点B再换一个位置行吗?对于这个问题的设计重在帮助学生理解与(,)为什么关于y=x对称,突出本课重点和难点。其它环节具体见教案。

高中数学说课稿14

  各位老师:

  大家好!

  我叫***,来自**。我说课的题目是《简单随机抽样》,内容选自于新课程人教A版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、和教学过程分析等四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  "简单随机抽样"是"随机抽样"的基础,"随机抽样"又是"统计学"的基础,因此,在"统计学"中,"简单随机抽样"是基础的基础。在初中学生已学过相关概念,如"抽样""总体"、"个体"、"样本"、"样本容量"等,具有一定基础,新教材把"统计"这部分内容编入必修部分,突出了统计在日常生活中的应用,体现它在中学数学中的地位,但同时也给学生学习增加了难度。

  2教学的重点和难点

  重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)

  难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性

  二、教学目标分析

  1.知识与技能目标:

  正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

  2.过程与方法目标:

  (1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

  (2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

  3.情感,态度和价值观目标

  通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性

  三、教学方法与手段分析

  为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学,并对学生渗透"从特殊到一般"的学习方法,由于本节课内容实例多,信息容量大,文字多,我采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,也能大大提高学生的学习兴趣。

  四、教学过程分析

  (一)设置情境,提出问题

  例1:请问下列调查是"普查"还是"抽样"调查?

  A、一锅水饺的味道B、旅客上飞机前的安全检查

  c、一批炮弹的杀伤半径D、一批彩电的质量情况

  E、美国总统的民意支持率

  学生讨论后,教师指出生活中处处有"抽样"

  「设计意图」生活中处处有"抽样"调查,明确学习"抽样"的`必要性。

  (二)主动探究,构建新知

  例2:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?

  A、在班级12名班委名单中逐个抽查5位同学进行背诵

  B、在班级45名同学中逐一抽查10位同学进行背诵

  先让学生分析、选择B后,师生一起归纳其特征:

  (1)不放回逐一抽样,

  (2)抽样有代表性(个体被抽到可能性相等),学生体验B种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题--(简单随机)抽样及其定义。

  「设计意图」例2从正面分析简单随机抽样的科学性、公平性,突出"等可能性"特征。这是突破教学难点的重要环节之一。

  例3我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。

  先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳"抽签法"步骤:

  (1)编号制签

  (2)搅拌均匀

  (3)逐个不放回抽取n次。教师板书上面步骤。

  「设计意图」在自主探究,合作交流中构建新知,体验"抽签法"的公平性,从而突破难点,突出重点。

  请一位同学说说例2采用"抽签法"的实施步骤。

  「设计意图」

  1、反馈练习,落实知识点,突出重点。

  2、体会"抽签法"具有"简单、易行"的优点。

  〈屏幕出示〉

  例4、假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验

  提问:这道题适合用抽签法吗?

  让学生进行思考,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:

  (1)编号

  (2)在随机数表上确定起始位置

  (3)取数。教师板书上面步骤。

  请一位同学说说例2采用"随机数表法"的实施步骤。

  「设计意图」

  1、体会随机数表法的科学性

  2、体会随机数表法的优越性:避免制签、搅拌。

  3、反馈练习,落实知识点,突出重点。

  ㈢课堂小结:

  1.简单随机抽样及其两种方法

  2.两种方法的操作步骤

  (采用问答形式)

  「设计意图」通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。

  ㈣布置作业

  课本练习2、3

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

高中数学说课稿15

  一、教材分析

  1· 教材的地位和作用

  在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要。

  y=asin(ωx+φ)图象变换的学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。

  ⒉教材的重点和难点

  重点是对周期变换、相位变换规律的理解和应用。

  难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。

  ⒊教材内容的安排和处理

  函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。

  二、目的分析

  ⒈知识目标

  掌握相位变换、周期变换的变换规律。

  ⒉能力目标

  培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。

  ⒊德育目标

  在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。

  ⒋情感目标

  通过学数学,用数学,进而培养学生对数学的兴趣。

  三、教具使用

  ①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。

  ②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。

  四、教法、学法分析

  本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。

  以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。

  五、教学过程

  教学过程设计:

  预备知识

  一、问题探究

  ⑴师生合作探究周期变换

  ⑵学生自主探究相位变换

  二、归纳概括

  三、实践应用

  教学程序

  设计说明

  〖预备知识

  1我们已经学习了几种图象变换?

  2这些变换的规律是什么?

  帮助学生巩固、理解和归纳基础知识,为后面的学习作铺垫。促使学生学会对知识的归纳梳理。

  〖问题探究

  (一)师生合作探究周期变换

  (1)自己动手,在几何画板中分别观察①y=sinx→y=sin2x;②y=sinx→y=sin

  x图象的变换过程,指出变换过程中图象上每一个点的`坐标发生了什么变化。

  (2) 在上述变换过程中,横坐标的伸长和缩短与ω之间存在怎样的关系?

  (二)学生自主探究相位变换

  (1)我们初中学过的由y=f(x)→y=f(x+a)的图象变换规律是怎样的?

  (2) 令f(x)=sinx,则f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的变换是不是也符合上述规律呢?请动手用几何画板加以验证。

  设计这个问题的主要用意是让学生通过观察图象变换的过程,了解周期变换的基本规律。

  设计这个问题意图是引导学生再次认真观察图象变换的过程,以便总结周期变换的规律。

  师生合作探究已经让学生掌握了探究图象变换的基本方法,在此基础上,由学生自主探究相位变换规律,提高学生的综合能力。

  〖归纳概括

  通过以上探究,你能否总结出周期变换和相位变换的一般规律?

  设计这个环节的意图是通过对上述变换过程的探究,进而引导学生归纳概括,从现象到本质,总结出周期变换和相位变换的一般规律。

  〖实践应用

  (一)应用举例

  (1)用五点法作出y=sin(2x+)一个周期内的简图。

  (2)我们可以通过哪些方法完成y=sinx到y=sin(2x+)的图象变换

  (3)请动手验证上述方法,把几何画板所得图象与用五点法作出的简图作比较,观察哪些方法是正确的,哪些方法是错误的。

  (4)归纳总结

  从上述的变换过程中,我们知道若f(x) =sin2x,则f(___)= sin(2x+),由f(x)→f(x+a)的变换规律得从y=sin2x →y= sin(2x+)的变换应该是_____.

  (二)分层训练

  a组题(基础题)

  如何完成下列图象的变换:

  ①y=sin3x→y=sin(3x+1)

  ②y=sin(x+1) →y=sin(3x+1)

  b组题(中等题)

  如何完成下列图象的变换:

  ①y=sin3x→y=sin(3x+1)

  ②y=sin(x+1) →y=sin(3x+1)

  ③y=sinx →y=sin(3x+1)

  c组题(拓展题)

  ①如何完成下列图象的变换:

  y=sinx →y=sin(3x+1)

  ②我们知道,从f(x)到f(x)+k的变换可通过图象的上下平移(k>0上移)(k<0下移)|k|个单位得到。那么由y=f(x)→y=af(x)+k的变换中,振幅变换和上下平移变换是不是也有先后顺序呢?请通过实例加以验证。

  让学生用五点法作出这个图象是为了验证变换方法是否正确。

  给出这个问题的用意是开拓学生的思维,让学生从多角度思考问题。

  这个步骤主要目的是培养学生的探究能力和动手能力。

  这个问题的解决,是突破本课难点的关键。通过问题的解决,让学生理解如果先进行周期变换,而后进行相位变换,应特别关注x的变化量。

  a组题重在基础知识的掌握,

  由基础较薄弱的同学完成。

  b组比a组增加了第③小题,

  重在对两种变换的综合应用。

  c组除了考查知识的综合应用,

  还要求学生对新问题进行探究,

  有较大难度,适合基础较好的

  同学完成。

  作业:

  (1)必做题

  (2)选做题

  作业分为两种形式,体现作业的巩固性和发展性原则。选做题不作统一要求,供学有余力的学生课后研究。

  六、评价分析

  在本节的教与学活动中,始终体现以学生的发展为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,注意学生的品德、思维和心理等方面的发展。重视动手能力的培养,重视问题探究意识和能力的培养。同时,考虑不同学生的个性差异和发展层次,使不同的学生得到不同的发展,体现因材施教原则。

  调节与反馈:

  ⑴验证两种变换的综合时,可能会出现有些学生无法观察到两种变换的区别这种情况,此时,教师除了加以引导外,还需通过教师演示和详细讲解加以解决。

  ⑵教学中可能出现个别学生无法正确操作课件的情况,这种情况下一定要强调学生的协作意识。

  附:板书设计

【高中数学说课稿】相关文章:

高中数学数列说课稿05-21

高中数学说课稿05-17

高中数学说课稿范文07-16

高中数学说课稿最新11-11

关于高中数学说课稿11-26

高中数学说课稿(15篇)01-18

高中数学说课稿15篇11-05

高中数学说课稿必备[15篇]06-08

高中数学等差数列说课稿04-18