分式教学反思
作为一位刚到岗的教师,我们要在课堂教学中快速成长,通过教学反思可以有效提升自己的教学能力,那么你有了解过教学反思吗?下面是小编整理的分式教学反思,欢迎大家分享。
分式教学反思1
本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是前一节的深化,同时解决了解方程的问题,又为以后的教学——“应用”打下了良好的基础,因而在教材中具有不可忽略的地位与作用。
本节的教学重点是探索分式方程概念、会解可化为一元一次方程的分式方程、明确分式方程与整式方程的区别和联系。教学难点是如何将分式方程转化成整式方程。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。
我认为比较成功的
1、把思考留给学生,课堂教学试一试这个环节中,我把更多的.思维空间留给学生。问题不轻易直接告诉学生答案,而由学生通过动手动脑来获得,从而发挥他们的主观能动性。我主要在做题方法上指导,思维方式上点拨。改变那种让学生在自己后面亦步亦趋的习惯,从而成为爱动脑、善动脑的学习者。
2、积极正确的引导,点拨。保证学生掌握正确知识,和清晰的解题思路。由于学生总结的语言有限,我就把本节课的重点内容:解分式方程的思路,步骤,如何检验等都用多媒体形式给学生展示出来。还有在解分式方程过程中容易出现的问题都给学生做了强调。
3、及时检查纠正,保证学生认识到自己的错误并在第一时间内更正。学生在做题过程中我就在教室巡视,及时发现学生的错误,及时纠正。对于困难的学生也做个别辅导。
虽然在课堂上做了很多,但也存在许多不足的地方,这也是我在今后教学中应该注意的地方。第一,讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。第二,给学生的鼓励不是很多。鼓励可以让学生有充分的自信心。“信心是成功的一半”,“在今后的课堂教学中,应尊重其差异性,尽可能分层教学,评价标准多样化。多鼓励,少批评;多肯定,少指责。用动态的、发展的、积极的眼光看待每个学生,帮助他们树立自信心。赞美的力量是巨大的,有时,一句赞美的话,可以改变人的一生。一句肯定的话、一个赞许的点头、一张表示优胜的卡片,都是很好的鼓励,会起到意想不到的良好结果。
分式教学反思2
我采取的教学方法是引导发现教学法:用数、式通性的思想,类比分数。引导学生独立思考、小组合作,完成对分式概念及意义的自主探索,突出数学合情推理能力的养成;通过“课后练习应用拓展”这一环节发展了学生思维,巩固了课堂知识,增强了学生实践应用能力。通过导学案让学生自己阅读课文,然后提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程之中获得了解决新知识的途径,学生感到数学知识原来就这么简单。我在这一环节提问问题注意了循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成。
通过《认识分式》这节课的教学我对大家说的这两句话认识非常深刻。
一是、只要你给学生创造一个自由活动的空间,学生便会还给你一个意外的惊喜。
二是、学生的潜力是无穷的,只有我们想不到,没有学生做不到的`。
本节课的缺点,我认为有:
一是在体现数学的实用价值方面不到位。
二是我本人普通话不是很好。
三是在因材施教方面做得还不到位,对学困生的照顾做的不是很好,课后的“拓展应用”对学困生来说就有相当大的困难,在这一环节没有呈现出梯度性。
《认识分式》的教学反思《认识分式》课程设计的思路是,从几个实际问题入手,让学生列出一些代数式,从中发现一种不同于整式但又类似于分数的一类代数式。通过独立思考、小组讨论归纳出共同特点从而形成分式概念。接着通过练习辨析概念,让学生明白整式与分式的联系和不同,注意其中常见易混淆之处。接着处理分式有(无)意义、分式值为零的情况,突破方式是练习、纠错、总结。
不足之处:
第一是学生讨论环节并不是很有效,在引导学生形成概念时语言不够精准,表达不够明确,导致时间有所耽误。
第二是没有让学生板演,展示。个别提问的少,集体回答的多,难免有混过去的学生。
第三是分式值为零的条件讲解时有些生硬,这一部分还是要让学生理解,才能在解决问题时不与分式有意思无意义的条件混淆。
这在遇到检测第6题时有明显的感觉,学生并不能很好的接受这个分式总是有意义,这是下一节课需要补充的。
分式教学反思3
上一周刚刚讲完分式的运算这部分知识,感受很深。学生们在刚学习这部分内容时,并不顺利,一方面是来自对因式分解知识的遗忘,另一方面是不掌握算理。要想更好得让学生掌握这部分知识,除了引导学生解决以上的问题之外,作为一个教师还必须做到心中有数:分式的四则运算是分式这一章的'重点,主要是会进行基本的运算,而不是计算的繁和难,教学时,可以根据学生的具体情况,适当增加例题、习题,让学生熟练掌握分式的运算法则。但与整式、分数的运算相比,分式的运算步骤多,符号变化复杂,所以在增加例题、习题时,要注意控制难度,特别是不要在分子、分母的因式分解上增加难度。关键是让学生通过基本的练习,掌握算理,弄清运算依据,做到步步有据,减少计算的错误率。
分式教学反思4
1、解可化为一元一次方程的分式方程的基础是会解一元一次方程,综合知识运用点多,难点在于要正确地把分式方程化为一元一次方程,问题的关键是在去分母,包括正确乘于各分母的最简公分母、正确去括号、合并同类项等,学生在做题时要很小心才行,如果其中有一步走错了,特别是去分母这一步错了,后面的功夫便白费了,所以在教学中教师要引导学生耐心地攻克每一个难点,千万不要在去分母时忘记把没有分母的项也乘于它们的`最简公分母。
2、对于一些分母需要变形的分式方程,强调要通过因式分解才能找出它们的最简公分母,在找公分母时还要注意互为相反数的情况,千万不要把问题复杂化,如果能够正确地找出最简公分母并去括号,就接近了成功了。要鼓励学生耐心一些,每一步要细心、细心再细心。任何一步错了都会导致后面的劳动白费。
3、我们在教学中高估了学生,以为教师知识点已经帮学生复习过了,学生就会了,可是在做练习时学生不是错这、就是错那,总之是很难得到正确的答案,所以要真正地能够做到基本训练到位、学生能得出正确的结论才是过关的体现。
分式教学反思5
本节课要求学生理解并掌握分式的加减运算法则,会运用它们进行分式加减运算。
为了完成教学目标,我先让学生做两道同分母分数加减法的计算题,让学生通过类比的方法,得出同分母分式运算法则及注意事项,然后遵循由浅入深,由简到繁的原则,先讲同分母分式的加减,同分母分式的加减法比较容易,它是进一步学习异分母分式加减法的基础。异分母的分式加减运算与同分母分式加减运算相比要因难一些。这里主要是做好"转化”工作,即把异分母的分式加减运算转化为同分母的分式加减运算,“转化”的关键是通分,而最简公分母的寻找是通分的关键,因此可先通过异分母分数的加减方法,与异分母分式的加减相类比,找出各分母系数的'最小公倍数,各分母所有因式的最高次幂的乘积作为最简公分母,然后再通分。
另外,这节课为了达到教学目标,突出重点,通过问题的提出,学生的列式,从对同分母分数加减法法则类比出同分母分式的加减法法则,从对异分母分数的加减类比出异分母分式的加减法法则,同时引导了学生把一个实际问题数学化。低起点,顺应着学生的认知过程,阶递式的设置台阶,使学生自然的归纳出法则,在运用法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,给足充分的时间让学生去演算,暴露问题,再指出问题所在,为后一步的教学提供较好的对比分析的材料。引导学生发现总结多种解题技巧,并比较优劣,通过分析题目的显著特点,来灵活运用方法技巧解决问题,锻炼和培养他们的发散思维能力。
在教学中还存在着很多不足,在今后的教学中进一步改善。
分式教学反思6
通过复习同分母异分母分数的加减计算类比学习分式的加减运算以分式的通分(分母为异分母的情况)作为预备知识检测,再到学生自主学习所完成的基础练习题及熟练法则,通过让学生板演计算过程后出现的问题(分子的加减,去括号问题及分式的最简化等)给予讲解及问题的讨论。最后是课堂练习巩固和小结作业布置。
在授课结束后发现学生对于同分母的.分式的加减运算掌握得比较好但是对于异分母的分式加减就掌握得不是很理想,很多学生对于分式的通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的形式。
分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,除法应转化为乘法。并且计算的最终结果应该为最简分式的形式,在计算时应先观察分式的特点从而分析是不是可以结合乘法的分配律进行计算从而达到化繁为简的目的。
分式教学反思7
经过一节课的教学,我个人认为有可取之处,但也存在不足。
一、优点
本节课初步达到了教学目标,突出了重点,层层推进,突破难点。通过与学生情感交流和互动式复习,放手让学生去猜想分式混合运算的顺序,通过例题讲解,使同学牢记分式混合运算的顺序,并且通过大量的练习来巩固,同时引导学生独立完成分式混合运算的题目,顺应着学生的认知过程,递进式的设置不同层次的练习,在法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,为重心,给足充分的时间让学生去演算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。
是以师生之间的情感为基础,通过活跃的课堂气氛,及时的对学生给予肯定和鼓励,使学生对数学产生浓厚的兴趣。每一个层次的练习完成之后都给予赞扬,在此基础上委婉的提出他们的缺点和不足,把学生的认知提升了一个高的层面上,同时把时间和空间留给学生,让他们多一些练习,多一些巩固。
是体会到一节课的`科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。
二、不足之处:
讲解的还不够充分,大部分同学能够掌握本节课的内容,但相对基础较差的同学还是很难理解,应该针对他们出一些难度小的题目给他们做,并给与详细的讲解。
学生与老师比较熟悉,有时课堂气氛过于活跃,使得在管理的过程中浪费了宝贵的时间。
忽略了例题的示范性和板书的清晰、条理性。
课堂准备还可以再充分一些。
分式教学反思8
经过这一节课的教学,静下来想一想,有几点收获和今后教学中值得注意的问题。
首先,这节课是分式加减的第一课时,要求学生理解并掌握分式的加减运算法则,会运用它们进行分式加减运算。
为了完成教学目标,我是这样设计教学过程的:我先给了两道同分母分数加减法的计算题,让学生通过类比的方法,得出分式运算法则及注意事项,
然后遵循由浅入深,由简到繁的原则,先讲同分母分式的加减,同分母分式的加减法比较容易,它是进一步学习异分母分式加减法的基础。
接着讲异分母分式的加减,异分母的分式加减运算与同分母分式加减运算相比要因难一些。这里主要是做好“转化”工作,即把异分母的分式加减运算转化为同分母的分式加减运算,
“转化”的.关键是通分,通分的关键就在于寻找最简公分母,因为是第一课时,这个知识点在本节课并没有展开讲授。
其次,这节课为了达到教学目标,突出重点,我通过问题的提出,学生的列式,从对同分母分数加减法法则类比出同分母分式的加减法法则,同时引导了学生把一个实际问题数学化。
低起点,顺应着学生的认知过程,递进式的设置台阶,使学生自然的归纳出法则,在运用法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,为重心,给足充
分的时间让学生去演算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。
分式教学反思9
这节课我用了探究与自主学习相结合的模式来完成。探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则,推及到分式的加减运算。整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎。通过把例题的再加工,使学生把错误暴露出来,引起他们的共鸣,课堂内学生的差错成为自己可贵的复习资料。接着出些不同的类型题,让学生再次经历分式的加减运算,强化技能,以达到熟练的程度。
在设计探究环节时用的时间过多,导致后面的练习没有足够的时间,学生做的有点仓促,没有完成预期的'目的。
目标生对此部分内容的学习显得较为困难,为此,不要求让他们整节课去弄懂,会一道题应适当鼓励他们,让目标生对学习产生信心。
总之,教学设计的种种考虑和措施,都是环绕着问题而展开的,都是在总体规划下为教学最优化而服务的。课后反思使自己以后的教学更优化。
分式教学反思10
昨天去实验小学听课,课题是《分式的乘除》的第一课时,刚开始秦老师利用类比的数学思想,通过复习分数的乘除的'运算法则推出分式的乘除法则。紧接着秦老师要求组长批改组员的预习作业,随后由小组组长汇报检查的情况,并把计算题出现那些错误一一类举出来。我看看手表已经过了15分钟,随后秦老师以学生错题为例题,讲解了两题分子、分母都是单项式的乘除运算。当时我在疑惑,一节课最重要的是前20分钟,为什么还没有讲解分子、分母是多项式的分式乘除的计算题呢?我觉得计算是学生的弱项,应该教师先做好解题的示范,然后学习加强练习,只有学生自己动手计算才会发现不足。课进行到25分钟左右,秦老师开始讲解分子、分母是多项式的分式乘除。秦老师不是自己单独讲解,而是和学生互动,一步一步的写出解题过程,并要求学生说出依据。最后秦老师请了四位学生在黑板上做练习,可能时间上没有分配好,留有余尾。
随后我们进行了评课,听了秦老师的课题简述,我才发现课堂上自己的评课方向是错误的,秦老师的课题就是研究学生预习出会出现的错误以及探讨预习中错题的类型,最后我觉得秦老师的课还是很优秀的,值得我们学习。
分式教学反思11
《分式》教学中,通过对教材的研读与操作,我觉得,教学应当根据学情对教材灵活应用,不必拘泥于教材,按部就班,甚至死板硬套,造成学生理解、应用的困难。
(一)适度添加“移号法则”。利用对比的方法认识了分式的基本性质以后,课本的编排是约分、通分,可在相关的例题训练中都不同程度的涉及到了“移号”的问题,而“移号法则”在新教材中有删略,仅仅体现在习题P9 第5题“不改变分式的值,使分式的分子、分母中都不含”-”号”,显然,教材的编写者试图淡化这一重要变形,仅仅从有理数的除法则方面再次加以提醒,这其实是远远不够的。基于此,我在引导学生完成粉饰的基本性质以后,对本题进行了深入探究:通过本题,你发现了什么?----通过提炼总结,得出了“分式、分式的分子、分式的'分母中,改变其中两项的符号,分式的值不变(移号法则)”的结论。这样,通过铺垫,学生在完成P6 例3(1)、P11 例1(2)、例2(2)等问题时,困难就迎刃而解了。
(二)对整数指数幂点的处理。当前,教材倾向于“数学从实践中来”的理念的践行,很多知识点要从实际问题中反映出来,然后加以研讨,而就整数指数幂而言,似乎完全不必:数学是一门有严密的逻辑体系的学科,从原有的“正整数指数幂”的基础上构建,其实更符合数学科的特点。因此,在具体的教学中不妨引导学生从数的发展史方面进行类比教学,使学生的知识体系有一个渐进的完善过程,更有利于其对整个体系的构建。
(三)对列分式方程解应用题方面,是本章的教学难点,也是学生(何止是学生?)颇感头疼的部分。解决这个问题的关键是正确审题。学生依据已有的生活、知识经验对问题进行解读,提取、整合相关信息,找出相等关系(等量关系),抓住这个突破口,列方程也就顺理成章了,故而在这一部分的教学中,应当充分让学生身体,准确理解题意,这才是关键环节,教材的设计顺应了学生的常规思路,可让学生在预习时充分利用,课堂教学时应着力找出相等关系。
分式教学反思12
本节课的乘除法是分式基本性质的应用,在此基础上类比小学学过的分数的乘除法运算法则进行学习分式的乘除运算,学生不难接受。
只是需注意的是,分式乘除运算的`结果要化为最简分式。在教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。
在分式运算的中,学生主要出现以下问题:
1、分式的乘法,如:运算方法有两种:一种是先乘后约分,另一种是先约分再乘,特别是多项式的时候更明显一些,学生不能很好的选择恰当的方法进行计算,从而使计算变得复杂,导致计算错误,计算结果要求必须为最简分式。
2、分式的加减法,有些学生总是在通分的时候忘记给分子乘代数式;再有就是遇到减法,而且后面分式的分子是多项式的时候,总是会出现符号上的错误(忘记变号),使得后面的计算全部错误。还有一部分同学在进行分式加减法的时候会和解分式方程相混淆,给分式去分母,还有得学生计算时把分母都漏掉了。
3、学生做题很不细心,也没有养成检查习惯。
针对以上问题,除了在讲清运算原理之外,要加强练习,针对学生的错误点反复训练,让学生真正掌握,提高学习效率。
分式教学反思13
通过分数与分式的比较,培养学生良好的类比联想的'思维习惯和反思方法;通过分数与分式的类比,向学生渗透矛盾转化的辩证唯物主义观点,并培养学生严谨的科学态度。本节课对分式经过引入,掌握,熟练,提高的过程,既学习了知识,又获得了知识,又获得了思维能力的提高。但本节课的不足之处是,符号规律的讲解不充分,学生掌握的不够扎实,在合适的机会里需要强化练习。
分式教学反思14
一、要创造性地使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行调整。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的.整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。
二、相信学生并为学生提供充分展示自己的机会
学生已经学习了一元一次去探究分式方程的解法及分式方程检验的必要性。
三、注意改进的地方
讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。
分式教学反思15
本节课教学内容较少。上课时先让学生带着四个问题进行阅读,学生在阅读过程中,能正确的解决前三个问题。在处理第四个问题时,我先通过计算( )÷3=0,迁移到( )÷x=0,从而得出值为零的条件。在练习中我设计了分式(|x|—1) / (x+1) 值为零的条件,再进一步强调分式有意义的.大前提条件才有值为零,大多数同学都能理解并掌握。
【分式教学反思】相关文章:
分式的教学反思07-17
分式的定义教学反思11-19
分式的乘除教学反思01-05
分式方程教学反思06-28
分式和方程教学反思12-08
分式和方程教学反思6篇12-09
分式的加减说课稿08-01
分式方程说课稿12-07
初中的数学分式说课稿03-01