组合图形的面积教学反思

时间:2024-06-08 09:05:27 教学反思 我要投稿

组合图形的面积教学反思汇总(15篇)

  作为一位到岗不久的教师,教学是我们的任务之一,通过教学反思能很快的发现自己的讲课缺点,写教学反思需要注意哪些格式呢?以下是小编为大家收集的组合图形的面积教学反思,仅供参考,希望能够帮助到大家。

组合图形的面积教学反思汇总(15篇)

组合图形的面积教学反思1

  《课程标准》对于图形计算的要求是注重使学生探索现实世界中有关空间与图形的问题;注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、位置、大小关系及变化,发展学生的空间观念。教学过程中,主要让学生在操作活动中认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。

  1、创设情景,激发学习兴趣。

  好的开始等于成功的一半。本课一开始我就从介绍学生所熟悉的笑笑和她家的新房入手,进而出示房屋平面图,让学生观察得出这个图形是由几个已学过的图形组合而成的,接着再出示一组生活中的组合图形,使学生充分感受到数学与生活的密切联系,激发学生的学习兴趣,为下一步探究组合图形做好铺垫。

  2、让学生在自主探索的基础上进行合作交流。

  本节课,我组织学生以小组为单位,采用小组合作的学习方式,让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。 学生在探索的过程中,放手让他们拼画图,分割图,并自行解决提出的问题。让学生在画一画,分一分的活动中,初步形成“组合”的概念,从而对“组合图形”的意义有了更深一层的理解。

  3、比较反思、逐步形成评价与反思的意识

  多种方法,我并不要求每个学生都去掌握,而是让学生选择自己喜欢的方法去计算组合图形面积,并阐述理由。学生通过比较,选择了比较简单的分割方法计算了,我顺势引导,为什么你们选择了这些方法计算(简单分割成2个基本图形的),而不选择哪些方法呢(分割复杂的方法)?学生总结出:计算组合图形的面积,对于分割的方法,分割图形越简洁,其解题方法也将越简单。我再次加以强调:在条件允许的情况下,转化的越简单,越好。让学生意识到要从多角度来思考问题。

  4、通过拓展练习,进一步转化其他转化方法。

  学生经过前面的探究知道了利用分割法和添补法可以把组合图形转化为学过的基本图形,来计算面积。为了帮助学生掌握更多的方法,我设计了通过割补和平移的方法计算组合图形面积的练习,拓展了学生的'思维。

  总的来说,本节课的教学始终贯穿着学生的自主参与,我只是辅助学生参与到整个过程中,学生由探究到发现到总结,思维活跃,兴致勃勃。课堂成为师生、生生的互动过程,培养了学生自主探究、合作学习的能力,在数学知识技能的形成、情感态度的发展、思维能力的培养等方面均取得了较好的效果。

组合图形的面积教学反思2

  教科书围绕计算“L”形客厅的面积设计了三个问题。其中第一个问题是根据给定“L”形客厅的数据,来估计客厅的面积,并提出把“L”形客厅转化为学过的图形来计算其面积的想法。第二个问题是第一个问题递进,意在解决怎样运用割补法把组合图形转化为学过图形的面积计算。第三个问题是第二个问题的拓展,提出了另两种分割的方法,以丰富学生解决组合图形面积计算的经验。

  在探索组合图形面积的过程中,注重让学生通过动手操作、观察、理解等手段分析探索组合图形,在发展空间观念的同时,找出隐含的条件,利用已有的知识解决问题。问题来源学生,回归与学生,学生在讨论分割的过程中,放手让他做,测量各个要素,解决提出的问题。让学生在活动中,亲自体验成功,在初步形成对组合图形概念的基础上,对“组合”的'意义有了更深一层次的理解,获得更多的成功的愉悦。

组合图形的面积教学反思3

  一.注重发散中的凝聚

  本课创设问题情景,引导学生用多种方法解决问题,再梳理归纳,找出这些方法的相同和不同,最后提升用转化的思想解决问题。在巩固练习时,每道题做完,都会让学生汇报交流用分割怎么做,用添补怎么做?对于此题你认为哪种方法更好?让学生在练习交流中感受对比,从而优化方法。我想,学习多种方法解决问题固然重要,但是对于方法的凝聚与优化也不容忽视。尤其是在解决组合图形面积这个问题上,如果学生能够根据图形的特点,根据图形中的数据信息直接优化出比较简单合理的方法,我想那将是思维的更高一个层次!

  二.注重大问题下的细节问题

  本课的两大部分教学设计用两大问题引导,第一部分探究方法,用一个生活中的问题情景“给客厅铺上地板,需要多少平方米的地板?”第一部分就围绕这样一个问题展开了,学生就在解决这个问题中寻找各种求组合图形面积的方法。第二部分应用方法实践练习“我们生活中有哪些组合图形面积的问题呢?”围绕生活中的问题展开了三个不同层次的小问题。然而,仅有大问题是不够的,在第一部分中,学生汇报期间,我会注重细节问题的处理,如:学生汇报把组合图形分成一个长方形一个正方形时,我会给学生提出问题的机会:“你怎么知道这是正方形呢?”我还会特意强调“这个3是怎么来的.啊,谁听懂了?”,在练习题中,我会追问:“怎么三角形中的5cm没有用到呢?”大问题将我们的课堂模块化,给学生提供足够的探索空间,而交流中的小问题,可以让我们的知识点落实到位,扫清学生做题易错题目的障碍。

  三.注重全面发展中的个性发展

  本课教学我设计了三道练习题,其中一星题目全班都做,做为基础练习,二星题目和三星题目学生根据自己的能力和喜好选做。这几道题我巧妙的改变了书中的题目,图看着像,却有着细小的差别,给孩子们带来的感悟也将不同。其中,一星题,在三角形中多给了一个条件,一来可以复习下三角形中面积中的对应高乘对应底边问题,二来可以培养学生的选择数学信息的能力,要根据你分割或添补的图形特点来合理的选择数据。二星题目的是想学生感受在做组合图形题目时,你选择分割还是添补要根据题目所给的数据是否能求出答案来合理的选择方法。三星题是逆向思维的训练,知道了需要哪几个数据其实内心中自然有了分割和添补的方法。在每道练习题中都让孩子充分的对比优化总结方法,谈做题的感悟,谈谈遇到此题目时应注意什么,把每道题挖到深处,出好每一道题,用好每一道题。两题同时展示给学会,学生根据自己的能力和爱好去选择题目,尊重学生的学习能力,从而使不同能力的孩子都能得到不同程度的提高!

  四.教学要注重教学语言和教学激情

  每一节数学课,我都想能像语文课那样让每个环节过渡的自然随意,语言能像语文一样具有美感具有感染力,我努力的尝试着从过渡语上,从大问题的精细语言上,从对学生的鼓励表扬上,去发挥数学语言的魅力。如“我们能够用多种方法解决问题固然重要,如果能从这些方法中总结出一些经验,那将更有价值!”一下子将我们刚才的探究活动过渡到总结提炼的环节,也可以让学生感受接下来的经验总结很关键很重要,魅力的语言对学生有提醒的作用有鼓励的作用。

  本课我又回顾了下整个视频,觉得教态比较亲切自然,但个别时候会有多余的语言和小动作,偶尔还会有重复和说的不精致的教学语言,还有整节课我的激情似乎不够,给孩子们了足够的探索时间和思考的时间,但整洁课下来学生好像思考的多了玩的少了,课堂气氛展现出来的并不是很活跃很热烈,这是我值得该思考的地方,是我的激情不够?语言没有感染力?还是课的教学设计上还需要继续调整?

  我想课结束了,我们思考仍在继续……

组合图形的面积教学反思4

  组合图形面积是学生学习了长方形、正方形、平行四边形、三角形与梯形的面积计算的基础上进行教学的,组合图形面积的教学,是这些知识的发展和延伸,也是日常生活中经常需要解决的问题。

  在教学过程中,主要让学生在操作、探究、合作的过程中,认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并在解决问题的过程中总结出组合图形面积计算的一般方法,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。

  教学活动开始时,让学生以小组合作的形式,用认识过的各种平面图形拼成自己喜欢的图形,既调动了学生的学习积极性,又为学生认识组合图形和后面分割组合图形做好了充分准备,我认为自己对此环节的设计比较好,在后面让学生判断是否是组合图形和分割组合图形的效果中得到了体现。

  在教学组合图形面积的计算方法时,首先是让学生自己对所求的组合图形的面积进行计算,在学生交流的方法的过程中,使学生自觉意识到计算组合图形的`面积可以用分割或填补的方法,而且在分割或添补时要根据已知条件进行,分割或添补时要尽量使计算简单。教学这一环节时,我认为自己处理得是环环相扣,步步逼近,学生理解得也很清楚。

  但由于课上到还剩十分钟时,突然停电,对于“组合图形不能随意分割”和“添补”的方法没有充分展示,时间也比较匆忙,没有照顾到学困生,这是这节课的一个小小遗憾,在今后的教学设计时还应该考虑意外情况的出现。除此之外,整个课堂时间的把握也稍稍有点欠缺,课堂小结的时间占用了课间一点时间,主要是在前面讨论用多种方法计算组合图形面时花得时间过长。

  总的来说,本节课还是充分体现了自己的设计意图,比较好的体现了本教学内容的教学目标,有较好的教学效果,自己感觉比较满意。对于教学中的不足,自己以后一定会认真思考,找出比较合理的办法来克服课中的不足。

组合图形的面积教学反思5

  《组合图形的面积》是学生学习了长方形、正方形、平行四边形,三角形和梯形的面积计算的基础上认识学习组合图形面积的计算,这是面积知识的提升和发展。在本节课的教学过程中,我注重了以下几个方面:

  1、创设情景,激发学习情感。

  好的开始等于成功的一半。本课一开始我就从谈论生活中的各种组合入手,进而出示七巧板拼图让学生观察得出这些图形都是一些组合图形,使学生充分感受到数学与生活的密切联系。为下一步探究组合图形做好铺垫。

  2、注重方法的指导与总结。授人以鱼,不如授人以渔。组合图形,从不同的角度认识,每个图形均可分为相应的几个部分。学生在解答中也将产生不同的思考方法。因此,在本课的教学过程中,我十分注重分析、解题方法的'指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设自主探索的情境,启发学生多角度、多方向、多层次挖掘新奇思路、各自提出有价值的分割方法,让学生通过一题多解的训练,培养发散思维,体验成功的愉悦

  3、问题来源于学生,回归于学生。学生在探索的过程中,放手让他们拼图,画图,分割图,并自行解决提出的问题。让学生在拼一拼、画一画,分一分的活动中,初步形成“组合”的概念,从而对“组合图形”的意义有了更深一层的理解。

  4、顺应生成,张扬个性。在备课时,只考虑到“割”和“补”,没想到学生在解决问题时,应用了“移补”的方法(是预料之外的) 虽然是因为数据的偶然性,但这种想法很奇特,方法用起来比较简便,予以鼓励。

组合图形的面积教学反思6

  在本节课的设计和实施中,我根据新课程的理念,进行了大胆的尝试,达到了良好的教学效果。主要有以下几点:

  1、课前准备。复习五种基本图形的面积计算公式。再出示一组组合图形,提问:这种图形叫什么图形,从而引出今节课的内容:组合图形的面积。接着让学生说出这些组合图形是有哪些基本图形构成的。这部分内容时间控制在5分钟。

  2、创设一个买新房的大情境,通过学生帮小华铺地板,粉刷墙,让学生在已有的基本图形面积的知识基础上,自主探索,运用不同的方法解决问题。在这一情境中,使学生明白,组合图形分割的意义,以及分割的必要性。同时,让学生体会到,分割的方法不同,但思路都是把复杂的图形转化为简单图形。

  3、自主学习:充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的'探索活动,给予学生充足的时间和思维空间。由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,尽最大限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。

  4、全班交流:我认为本课时的重点是使学生发现理解掌握计算简单组合图形面积的方法和策略。所以在全班交流时,重点放在理解把简单组合图形分割或添补成已经学过图形的方法,明确计算组合图形面积的思路。本节课教学过程也说明,学生在理解发组合图形的计算方法时,实现了预期的教学效果。

  5、在探索组合图形面积的过程中,我注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,在发展了学生空间观念的同时,找出隐含的条件,使学生能够利用已有的知识解决问题。

  6、在本课的教学过程中,注重分析、解题方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设自主探索的情境,让学生在生生互动的环节中主动投入到知识的学习过程中,自己悟出学习方法,学得主动积极、生动灵活。

组合图形的面积教学反思7

  这节课是学过基本图形的面积后的一节新课,在新课快要结束的时候,我组织学生开展反思活动,让学生回顾一下,这节课我们学习了什么?在研究过程中碰到了哪些问题?我们是怎样解决这些问题的?有什么好的方法或建议吗?

  这一系列的反问,让学生经过梳理后,纷纷表达了自己的反思与收获生。生1:今天我们研究的是组合图形的面积计算,它就是由一些基本图形组合而成的;生2:这些图形的面积不能直接计算,要把它转化成基本图形就可以计算了;生3:转化的方法有两种,一是分割法,用合并求和的`方法,也就是加一加来计算,另一种是添补法,用去空求差的方法,也就是减一减来计算;生4:这种转化方法在数学学习中经常用到,如平行四边形的面积推导,三角形梯形面积推导等,除数是小数的除法转化成除数是整数等,因此我们要好好掌握。学生的发言让我感动,同时给予的点评和肯定,我发现只要在教学中给学生充足的思考、交流空间,学生就会给你一个大大的惊喜。

组合图形的面积教学反思8

  本节课的内容是在学生学习了平行四边形、三角形、梯形面积计算的基础上进行教学的。通过计算组合图形的面积,有利于综合利用平面图形面积计算的知识,进一步发展学生的空间观念。

  成功之处:

  多种方法解决问题,发展学生的创造性思维。在例4的教学中,首先让学生观察房子侧面墙的形状是有哪几个基本图形组合而成的,然后让学生独立解决问题,学生对于这类问题没有感到困难,非常轻松的解决了问题,从而得出第一种算法:(1)组合图形的面积=三角形的面积+正方形的面积:

  三角形的面积=5×2÷2=5(平米房)

  正方形的面积=5×5=25(平方米)

  组合图形的面积=5+25=30(平方米)

  接着教师抛出问题,你还有不同的解决问题的方法吗?一石激起千层浪,学生通过教师的发问引起思考,从而出现了如下算法:

  (2)组合图形的面积=2个梯形的面积:

  梯形的面积=(5+5+2)×(5÷2)÷2

  =12×2.5÷2=15(平方米)

  组合图形的.面积=15×2=30(平方米)

  (3))组合图形的面积=长方形-2个三角形的面积:

  长方形的面积=(5+5+2)×5=35(平方米)

  2个三角形的面积=5÷2×2=5(平方米)

  组合图形的面积=35-5=30(平方米)

  这样通过思维的碰撞,产生出智慧的火花,同时也揭示了组合图形面积的计算方法:一是分割法:把一个组合图形分割成几个简单的规则图形,分别算出各个图形的面积,最后求出它们的面积的和。二是挖空法:把多边形看成是一个完整的规则图形,计算它的面积以后,再减去空缺部分的面积。三是割补法:就是把图形的某一部分割下来补到另一部分上,使它变成一个我们已学过的几何图形,然后再进行计算。四是折叠法:把组合图形折成几个完全相同的图形,先求出一个图形的面积,再求几个图形的面积之和。

  不足之处:

  学生对于多种方法的应用还存在不灵活的现象,个别学生出现拆分的图形的数据不完备,导致出现错误。

  再教设计:

  基本方法掌握,主要从和与差的两种方法教学会比较好一些。

组合图形的面积教学反思9

  《组合图形的面积》一课,是北师大版五年级上册第六单元的教学内容。在学习本课之前,学生已经学习了长方形、正方形、平行四边形、三角形与梯形这些基本图形面积的计算方法。本课的教学目标是在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想;能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答;能运用所学的知识,解决生活中组合图形的实际问题;结合具体题例,感受计算组合图形面积的必要性,在有效的情

  境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

  整体教学设计有以下特点:

  一、注重探究过程,培养发散思维

  在“创设情景—运用资源—自主探究—合作学习”教学模式下,由美丽房子引入新课,激起学生的兴趣,从而引出五个基本图形。在本课的教学过程中,我注重解题方法与策略的指导。学生由动手操作,在图形上画分割线,继而探索出多种求组合图形面积的方法:分割法、割补法、添补法等,明白了只要能把图形分割成我们学过的几个基本图形,通过计算基本图形的面积后,通过加减就能计算出组合图形的面积。在投影上可以实现同时展示多种方法,让学生得到很好的锻炼机会,培养学生多角度看问题。全班交流时,在平台把学生的'各种做法在同一个页面上显示出来,学生可以在这上面进行讨论各种方法的优劣,对方法进行优化,教学目标得以落实。

  二、注意学习的策略,掌握方法

  本节课并不是只教会学生求几个组合图形的面积,而是让学生体会到割补、转化的方法。策略、方法的掌握比知识本身更重要,学生掌握了策略方法后,就能举一反三,触类旁通。所以在计算两个组合图形的时候,并没有马上让学生进行面积计算,而是经过讨论后对方法有了选择后在进行计算,这样即节省时间学习效果又好,学生思维得到提高。

  三、需要改进的地方

  当然还有很多细节的地方需要改进,比如说这节课我是在学生已掌握基本图形面积计算的基础上教学的,课堂上尽量调动学生动手、动脑、动口,课堂上,思维活跃的好几名学生能说清组合图形面积计算思路,配合较好,但是,本节课上部分学生计算时列式不正确,因为组合图形中的一些数据不是直接给出的,需指导学生写清计算过程,学生在计算过程中,容易把单位搞错,培养学生细心、认真的好习惯。在探究客厅面积的计算方法时,采用了先让学生自主探究组合图形面积的计算方法,再引导学生有策略地选择比较好的计算方法,让学生明白组合图形转化成基本图形需要优化,有时也会把简单的图形复杂化,注意要让学生选择比较简便的方法来计算组合图形的面积。帮助学生建构数学知识,教师不能替代学生的思考和体验,所以在教学设计上应该放手给学生去思考去探索。最后,要加强基本训练,及时巩固学生当堂学习的内容,保证课堂教学质量。

组合图形的面积教学反思10

  组合图形面积是学生学习了长方形、正方形、平行四边形、三角形与梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的问题。

  在教学过程中,主要让学生在操作活动中认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。把这个图形分成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。接着让学生来说说自己的做法,通过投影展示学生的分法(以分割成两个长方形为例),

  第一,你是怎样分的?(分割成两个长方形);

  第二,长方形的面积公式是怎样的?(长乘宽);

  第三,要计算第一个长方形的面积,长是多少?宽是多少?要计算第二个长方形的面积,长是多少,宽是多少?

  在这个环节中,学生基本上都能够运用分割或添补法把组合图形转化为所学过的基本图形,但在展示学生分法时,忘记了将在巡堂时发现的个别学生的分法是由于找不到相关条件无法计算图形面积也进行展示和集体讨论为什么,这是不足的地方(如果当时在这个环节中,让学生充分展示汇报不同的分法后,教师接着引导学生总结优化出哪种分法更利于我们计算这个组合图形的`面积或者哪种分法计算这个组合图形的面积更简单,然后就让学生用这种方法来计算图形的面积,可能后面的环节就不会不够时间)。

  学生汇报了不同的分法后,就让学生用自己喜欢的方法去进行图形的面积计算,然后让学生汇报展示,从中小结优化出那种分割法或添补法计算这个组合图形的面积更简单。这个环节花的时间比较多,跟前面的环节有类似,结果后面的时间很紧。因此在今后教学中应要多注意教学环节之间的内容设计,尽量紧凑,及时发现问题和作出反馈。

组合图形的面积教学反思11

  组合图形的面积是在学生学习了长方形、正方形、平行四边形,三角形和梯形的面积计算的基础上认识学习的,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

  成功之处

  1.注重组合图形的面积计算方法。通过添加辅助线,让学生用不同的方法解决问题,学生经过探索、发现总结出了分割法、添补法两种计算组合图形面积的方法。

  方法1:把组合图形分成一个三角形和一个正方形。先分别算出三角形的面积和正方形的面积,再相加。

  方法2:把这个组合图形分成两个完全一样的梯形。先算一个梯形的面积,再乘以2。

  方法3:把这个图形补上两个三角形就变成了一个大长方形,先分别算出大长方形的面积和三角形的面积,再用大长方形的面积减去两个三角形的面积。

  通过对比,总结出方法1和2为分割法,方法3为添补法,分割法要利用加法进行计算,添补法要用减法计算,利于学生建模思想的形成。

  2.注重数学思想的教学。组合图形的面积计算实际上就是把不规则图形转化为学生学过的几种图形,利用基本图形面积再进行计算。在教学中,让学生进一步感受到我们所学的.新知识都是利用原有知识,在原有知识基础上进行学习的,教给学生学习的方法,即“授之以鱼”不如“授之以渔”。

  不足之处

  由于注重了多种计算方法的展示,本节课在各环节的分配上有所欠缺,需要对各环节有个提前预设,需要适当的引导孩子们在有效的单位时间内进行学习,达到预期的学习效果。

  改进之处

  组合图形方法优化上,要引导孩子们达到“分割的图形越简洁,计算起来越简便”。

组合图形的面积教学反思12

  1、例1第二种算法教学失败。

  教材例1共呈现两种不同的算法,第一种算法直接利用插图中的数据,而且还列出了算式,学生只需完成计算即可。第二种算法教材只提示了可以把它分成两个完全一样的梯形,列式则完全放手让学生独立尝试。由于这种解法梯形的下底、高都无法直接由图中得出,因此步骤较多。在教学中,我是引导学生们先分析得出第一种解法并正确列出算式后再开书完成填空,并根据方法提示,尝试写出第二种算法。殊不知真正需要我引导分析的却是第二种。课下与学生困生交谈中了解到其实在昨天预习时,第一种方法我都已经会了,但今天听您讲了第二种算法,我还是不明白。

  我也困惑,当学生已经掌握既简单又易懂的方法后,他们为什么还要去探索这么复杂的算法呢?没有动力的探索又能激起学生多大的学习热情呢?

  【再教设计】

  再教时我会先引导学生先分析第二种解法,并列出正确算式,然后再放手让学生探索还有没有更简洁更易懂的方法。

  2、作业的'格式教学失败。

  教材列的是综合算式,我在指导练习时也是按教材格式书写的板书。但在作业中,我却要求大家都用分步解答。由于我的示范作用不到位,所以作业虽然正确率较高,但格式却是各具特色,很不统一。在这一失误中,让我常常体会到其身正,不令而行;其身不正,虽令不从。

  其实我要求学生用分步解答,主要基于以下几点考虑:1、分步列式时是先写字母公式再代入求值,这样不仅可以巩固所学面积计算公式,而且可以有效防止学生列式出错。2、在考试中如果列综合算式,无论是写错一个数据还是少了2均视为全错。可如果列分步则不同,可以按步骤适当给分。(呵呵,有点应试教育的思想在作祟)。

  【再教设计】

  要求学生列分步解答,那么教学时我一定要按照自己所规定的格式为学生作好示范,并向学生解释这样做的理由。只有当我的理由足以使他们信服,我的行为足以成为他们的表率时,我想推进起来可能会顺畅一些吧

  困惑:当把图形变形后的列式该如何评价?

  有学生将例2第二种算法中的两个完全一样的梯形通过旋转平移变成一个平行四边形。他们的列式与第一种算法的步骤一样多,也只需要4步。即(5+2+5)(52)这种列式可行吗?

  组合图形是由几个简单的图形组合而成的,一般是要将若干个简单图形的面积相加(或相差)求的,那么这种经过转化只需用简单图形面积公式求的结果的方法可行吗?

组合图形的面积教学反思13

  组合图形面积是学生学习了长方形、正方形、平行四边形、三角形、梯形的面积的基础上进行教学的,是日常生活经常需要解决的问题。在本节课的设计和实施中,我根据新课程的理念,进行了大胆地尝试,达到了良好的教学效果。主要有以下几点:

  一、复习铺垫,沟通新旧知识的联系

  组合图形的面积计算,需要在长方形、正方形、平行四边形、三角形和梯形面积计算的基础上进行。在学习新知之前,我组织学生通过复习,回忆旧知,从学生已有的经验和已有的.知识背景出发,找准新知的最佳切入点,为知识的迁移做好铺垫。

  二、自主探索,感受解题策略的多样性

  学生是学习的主体,只有让学生亲身经历知识的形成过程,这样学得的知识才最深刻。教学中,我放手让学生自主探究,合作交流,亲身经历计算组合图形面积的过程,重视把学生的思维过程充分暴露出来。在自主探索、解决问题中感受解题策略的多样性。

  三、有效利用多媒体,提高课堂效率

  运用多媒体等现代化的教学手段,能把教学过程组织得更生动、形象,有利于学生进行总结归纳、抽象概括,主动参与知识的形成过程。教学开始,我用动态演示几个基本图形的组合,巧妙地让学生理解了组合图形的定义;理解求组合图形面积的多种方法时,我用生动地分解组合图形,让学生一目了然,加深了学生对知识的理解和掌握。

  四、让数学回归生活,提高实践能力

  心理学研究表明,当学习内容与学生熟悉的生活实际越贴近,学生自觉接纳知识的程度就越高。教学中,我向学生展示了生活中的组合图形,设计了让学生解决“做一面中队旗至少要用多少布”的生活问题,课后巩固环节让学生运用所学的知识帮助老师解决生活中铺地板的实际问题,学生从周围熟悉的事物中体验、感悟了数学,感受到数学就在我们身边。同时,激发了学生从生活中寻找数学问题的兴趣,提高了学生解决实际问题的能力。

组合图形的面积教学反思14

  本课是小数数学的空间与几何的内容,与生活联系紧密,有较强的实用性。全课主要借助自主个性学习平台,开展自主探索、交流学习的方式进行学习。

  主要的流程是:

  1.先以风筝制作活动的作品(由学过的基本图形组合而成)引入,激发学生兴趣。

  2.布置自主复习基本图形如平行四边形、三角形等的面积计算的推理,渗透转换思想。并由学生来向其他同学来介绍各自的转换方法。

  3.新授组合图形的面积计算,通过观察生活中的图形,用自学方式进行。

  4.交流自学结果,总结求组合图形面积的基本思想:合理割补、分块求积及加减组合。

  5.队旗的组合图形实例的教学,让学生实践分块、加减及割补的方法。

  6.练习新知,自主选择不同难度的进行练习。

  7.交流练习、集体订正。

  8.课堂小结,并向学生介绍自主学习平台的使用,使学习的时间与空间都向课堂以外作出延伸。

  优点:

  1.以风筝这一生活中组合图形实例导入,能在一定程度上激发学生兴趣。同时,更能在展示的时候,使学生初步认识到组合图形与基本图形之间的一点联系。

  2.用自主复习(练习旧知)的方式,边操作边计算,使学生既完成了旧知的巩固练习,为接下来作好计算上的必要准备,更用平行四边形等图形的推理中的转换思想作引导与渗透,更为进行求组合图形的面积作好思想与方法上的准备。

  3.在自主旧知复习的终了,教师通过信息技术的合理运用,将所有学生的答题情况汇总,并能根据总体情况及照顾个别学生的特殊情况作出合理的教学调整,因材施教。

  4.教师在学生自学新知时,能布置清楚学习的目标、步骤,更有清楚的方法指导、资源的提供,为学生的自主学习提供必要的支撑,使学生有目标、有步骤、有方法、有内容、有素材。

  5.通过学生自学,动手试做练习等,让学生在做中学,充分体验。汇报自学成果,由学生总结出解决的方法,让学生在汇报中得到成功的感受,以刺激学生乐于学。

  6.队旗的实践中,由学生提出分块解决问题,将数学的学习运用于生活中,也培养了学生的实际运用意识,体验数学的有用性,但从整个教学过程中,可以发现这也是有限的。

  7.练习新知时,自主进行,可以根据学生自己的情况进行不同的内容、层次的学习。

  8.在小结时,再次点明自主学习平台的优势,鼓励学生在课后校外等再学习,拓展延伸了学习的时间与空间。

  不足与改进设想:

  1.在以风筝导入时,语言并不够生动,在情感方面未能真正起到鼓动,兴趣未必能得以很多程度的激发。建议:如果能在教师出示1、2个风筝图形后,再由学生来介绍个把自己见过或想到的由基本图形组合而成的风筝形状,那样会起到更好的效果,让材料更贴近学生,更能激发兴趣。

  2.同样在导入时,出示风筝图,但只是简单地看,而未作合理地利用与分析。建议:如教师能在此作出适当地引导,问“你发现各风筝是由什么图形组合而成的?”让学生更鲜明地知道组合图形与基本图形的关系。

  3.练习新知时,虽然教师采用自主选择适合自己的进行练习,但是这所有的内容都是开放的,学生对自己的自评能力通常会过高或者过低,如何让学生真正在这种形式中选择到适合自己的内容。建议:如果能在这一环节,教师能对学生的练习内容的选择上起到一定程度的限制,让学生在一定自由的范围内进行自主选择的练习,这样更能适合每位学生的发展。

  4.在小结后,出现了一个七巧板的拼图游戏,教师可能是想调动学生在课后继续学习的积极性而设计的,但学生并未体验,实际上是形同虚设。建议:但如果将此内容换成其他内容,或者引导学生在生活中再去探索组合图形的实例并解决实际问题,并在相关的'网络平台上交流学习心得体会会更有效果,更能培养运用意识,体验数学的有用性。

  5.建议:(接上面4)将七巧板的游戏放在一开始的导入阶段,让学生在玩中进入学习状态,更自然,可能要比风筝可能激发学生的兴趣。

  6.组合图形这一内容,是小学数学中的几何板块,与生活联系紧密,所以应尽可能借此培养学生对数学的运用意识。而本课中教学的例题、练习等都相对离学生较远,应考虑再寻找更近的素材。

  7.过分依累于信息技术这一平台,将所有的学生的练习书写等都在电脑上进行,虽能方便教师汇总学生的学习情况,调整教学,但也有以下一些不足:

  (1)可能会受到学生实际电脑的操作水平的限制,可能会给此类同学造成学习上的不利;

  (2)也因此教师没能在板书中出示解题的范例,学生没有明确的规范,并不能帮助真正需要这些帮助的同学;

  (3)在电脑上答题,书写过程中出现“*”“/”等符号来表示“×”与“÷”,对于数学这一学科的实际要求,是否规范有待商讨。

组合图形的面积教学反思15

  【教学内容】

  北师大教材五年级上册第一单元第一课时《组合图形面积》

  【学校及学生状况分析】

  我校是白银市白银区的一所城区中心小校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版五年级教材的使用学校。

  组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。

  【教材分析】

  组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生算法多样化。

  【本课教学目标】

  1、知识与技能

  (1)、在自主探索的活动中,理解计算组合图形面积的多种方法。

  (2)、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  (3)、能运用所学的知识,解决生活中组合图形的实际问题。

  2、过程与方法:

  让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

  3、情感态度与价值观:

  (1)、结合具体题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

  (2)、渗透转化的数学思想和方法。

  【教学重难点及关键:】

  1、重点:掌握组合图形面积的计算方法。

  2、难点:理解计算组合图形面积的多种方法。

  3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。

  【课前准备:】

  基本图形卡片、七巧板以及多媒体课件

  【教学课时】 一课时

  【教学设计】

  (一)观察动画,复习旧知,引出新知

  1、观察动画,分析引入

  (媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)

  师:观察这幅图画,你发现了什么?

  生:很多的基本图形,组成了很多的图形) [板书:基本图形]

  师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]

  2、复习基本图形面积公式

  师:还记得我们都学过哪些基本图形吗?

  (随着学生回答,按学习的顺序贴各个基本图形)

  问:那谁还记得这些基本图形的面积公式?

  (随着学生回答,在各个基本图形后面写公式)

  师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积” )

  (设计意图:通过拼图游戏,激发学生学习的兴趣,学生兴趣浓厚的动手操作,在操作过程中理解了组合图形的.意义。使课堂一开始就进入了一种轻松的学习氛围。)

  (二)动手拼图,初探方法

  1、自拼图形,分析要素

  师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。

  请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。

  边做边思考:

  师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?

  师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?

  (学生活动,教师巡视,指导画高。)

  2、展示图形,分析条件

  (学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)

  师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。

  (强调公共边:既做长方形的长,又作三角形的底。)

  3、打开思路,探索面积

  师:怎样求一个组合图形的面积?

  生:分另计算三角形与长方形的面积,然后相加。

【组合图形的面积教学反思】相关文章:

组合图形的面积教学反思06-08

《简单组合图形的面积》教学反思03-13

数学组合图形的面积教学反思02-19

说课稿:《组合图形面积》12-17

组合图形面积说课稿03-05

《比较图形的面积》教学反思03-23

组合图形面积说课稿15篇07-15

五年级上册数学《组合图形面积的计算》教学反思06-16

五年级《组合图形面积》说课稿12-27