《分数乘法》教学反思
身为一位到岗不久的教师,我们要有一流的课堂教学能力,通过教学反思可以有效提升自己的教学能力,那要怎么写好教学反思呢?下面是小编整理的《分数乘法》教学反思,仅供参考,欢迎大家阅读。
《分数乘法》教学反思1
1.
分数乘法一单元已经学完,我们往往感觉学生学的很好。应用分数乘法的意义去解决问题,也能列出算式。其实不然,当我们学学完第二单元分数除法时,我们就会惊奇的发现,原来事情不是这样的。学生不知道是列方程还是直接去乘分数。学生往往难于判断究竟把那个数量作为去乘还是去除以几分之几。于是乎,我们的教学就又陷入了瘫痪。富有经验的老师在多次尝试失败以后,在此处,都既无可奈何又顺理成章的选择了五步走的方法。即:一,判断单位一;二,画图;三,写出数量关系式;四,判断单位一已知还是未知;五,已知直接乘未知用方程。教参71页提出现在采用方程解,化难为易,思路比较统一。所以,五步强调方程先入为主。其实不然,学生由于目前接触到的都事用算术方法比较简单的,所以方程的优越性不是很明显,学生还是选择算数方法的比较多。我没有过多的统一。而是任其自由选择。
我重点思考的在于新教材与老教材先比,本部分知识简化了那么多内容,为什么还是学起来很费劲呢?我想,我们的新课改目的是好的,素质教育是好的但是,我们每个人从小接受的教育不都是德智体美劳全面发展吗?什么时候我们都不能认为减少数学知识容量就是素质教育了。反而,正是因为减少了锻炼的机会和次数,我们学生的某些数学功能正在退化。我们都明白,只有加强锻炼,我们的身体才能更强壮。数学能力也是如此。
2.
现在我写下这节课的教学反思,目的'不是在于从教学内容上去分析。而是从这一个月来我接触这个班的些许感想,做一梳理。
本班学生差,这在一接班,班主任和上一任数学老师都已经郑重其事的向我做出了重要说明。我当时蛮有信心,一个多月下来,我才真正感到事情的严重性。特别是第三单元考试成绩一出来,我都傻了。我班90分以上才三人,一班24人。不及格我班17人,一班3人。平均分相差足足20分
我整整几天都在思考:为什么差这么多?还能不能赶上?怎样才能赶上不是一般的差,不是一天两天的差!这个班从二年级就开始差,一直差到现在。我反思了很长时间,决定采取以下措施:
1.先树立自信心 越是这种情况,越是因为他们心里没有自信心。自暴自弃。其实造成现在这种情况,不能全怪孩子。
2 要爱后进生。对后进生,要尤其爱护。这听起来想冠冕堂皇,其实,真是着这样。如果你不能做到只一点,最起码也要做到,不能谩骂和侮辱他们。这是每个人都知道的,也是每个人最难做到的。
3 学习习惯的培养口算心算的习惯,很重要。结果是勤动手勤动脑。脑子越用越灵活。竖式的书写位置,竖式的保存都做了严格的规定。
4 在课堂上下功夫。争取让学生喜欢你,就会喜欢你的课堂。喜欢学数学。
《分数乘法》教学反思2
教学了《分数乘法(一)》。我将本课的教学目标定位为理解分数乘法的意义及算理、算法。与本课相联系的'学生的学习起点是整数、小数乘法的意义,算理与算法。分数加减法的算理算法。我在复习铺垫环节,抓住了“分数”、“乘法”两个关键字。在备课时,可以从两个角度进行思考:第一,分数乘法的算理、算法基础是分数加减法;第二,因为是乘法所以又涉及到乘法的意义。因此在教学时,我对分数的加减法进行了深入复习,对乘法的意义也进行了强调。由此,再迁移出分数乘法,学生觉得很轻松。
另外,许多同学在预习时已经会算,即已经通过自学知道算法是什么,但这仅是限于机械地记忆,没有理解其背后的本质。因此,在教学过程中,我认为教师可以结合画图,帮助学生数形结合去理解乘法的意义和算法。算理和算法在本课中,我认为已经浑然一体,不需分割。在解释算理的过程中,学生即总结出了算法。
《分数乘法》教学反思3
这节整理复习课我对分数乘法知识进行一次梳理,给学生建立一个完整的分数乘法知识体系,巩固对乘法知识的掌握和理解应用。
一、以合作交流为主,发挥学生主体地位。
本节课是一节复习课,内容学生都已经基本掌握,所以,我放手让学生自想、自做、自讲、自论。先是让学生课前用自己喜欢的方法对本单元的知识进行整理和复习,课上再采用小组合作交流的形式互相讨论交流,发现自己有遗漏的知识点,在小组内自行补充,完善了本单元的`知识结构,同学们表现的积极主动,找到了各种整理方法,使知识的学习不流于形式。
二、课前布置同学们对易错题的整理,让孩子在课前寻找在本单元做错的题目,再找出共性的易错点进行交流,重点让学生说说错误原因和提醒同学们应该注意的问题,加深对错题的认识,避免下次犯类似的错误。在教学时由于时间有限,对于学生找的易错题没有完全交流到位,课前老师自己也应找一些典型的错题进行整理,这样能对学生整理不到位的地方进行一个补充。
《分数乘法》教学反思4
今天,我教学分数乘法的第一课时,分数和整数相乘。在教学的过程当中,使我深刻地感到预设与生成的重要关系。在教学乘法的意义以后接下来首先想通过从意义上理解分数乘法的方法,想不到的事情发生了。我指着板书:3*2/15=2/15*3=2/15+2/15+2/15,要算3*2/15或2/15*3就是算什么?(算3个2/15的和)接着完成板书:3*2/15=2/15*3=2/15+2/15+2/15=2*3/15=6/15=2/5(公顷)到这里,老师以为学生很明白,接着就按照预设走下去。
出示:1/8*2 1/8*3 1/8*4师:下面这些算式各表示什么?能像老师这样算出结果吗?生板演:1/8*2=1/4.........。 一直都用整数和分母约分。我一看就不知所措了,如果说着三个同学已经事先学会了,那并不代表所有的同学都会啊!也可以说他们能理解为什么用整数和分母约分吗?其他同学如果机械模仿那怎么能真正经历知识的形成过程?我原本的目的关键在于先通过掌握求几个相同加数的和,在此基础上追问:80000*1/8难道还要用80000个1/8来求和吗?从而来激发学生观察整数乘分数的方法,即通过写出相同加数来求和还不是个简便的办法这一教学思路。下课以后心理很不是滋味,决定到六(3)班再上一次,这次我对以上环节作出了调整。师:1/8*2表示什么?生:表示求2个1/8的.和。师板书:1/8*2=1/8+1/8=1*2/8=2/8=1/4,追问:1/8*3呢?1/8*4还能这样算吗?(生说老师板书)此时板书的过程很清晰了。突然出示:80000*1/8问:还能这样写下去吗?此时学生都摇头说不能,很麻烦!师:那也就是说通过写出几个相同加数来求和的方法计算整数乘分数还是有一定局限的是吗?学生都表示肯定。接下来教师擦去以上的求和过程直接引导学生观察计算中的特征,引发学生思考,达到了引导、质疑的学习氛围。
《分数乘法》教学反思5
这节课主要是让学生通过具体的情境初步理解“求一个数的几分之几可以用乘法计算”。在以前没学分数乘法的时候,我们是先求出1份的量,再乘法相应的份数解答求一个数的几分之几是多少的问题,今天的学习既是对分数乘整数意义的拓展,可以看作是一次方法上的优化和提升。从课堂反馈看刚开始的时候有一小半的学生还是不习惯用分数乘法计算,还是运用分数意义的认识去解决问题,但经过一系列的训练后大多数的学生列式已经很自然的把单位“1”的量与它的几分之几相乘。
本课教学的导入部分,我选择了复习导入的方式,我把课后的“练一练”提前,改变题目要求,让学生运用分数的认知相关知识解决问题,学生非常熟练,在这个部分。我的教学意图非常明确:复习分数的相关知识、强化单位“1”。为解决例2问题、学习新的方法做好铺垫。
在教学例2时,我首先带领学生理解题意,重点带领学生理解1/2、2/5的意义,从而确定单位“1”。在解决问题的环节,我首先出示问题(1)红花有多少朵?学生独立解决,学生根据以前所学知识,当然列式10÷2=5(朵)这时候我再揭示:像这样求10的1/2是多少还可以用乘法计算。这时出示:10×1/2让学生独立计算得到与第一种计算方法一样的结果。然后,我引导学生进行比较这两个算式有什么联系?问题一提出来,学生的反应不是很强烈,很多学生不知道应该怎样去回答这个问题,这时,我就直接告诉了学生,实际上如果我将问题设计的更有坡度一些,能再等一等让学生多思考了一会儿,我想信学生一定会明白了原来两个算式都是求一个数的二分之一是多少。这样就很好的把旧的方法与新的方法进行很融洽的衔接。实现了方法上的跨越。
基于问题(1)的教学,问题(2)抛出以后,我直接让学生独立完成,在学生汇报环节,果然与我预期的一样,学生列出了两种不同的算式10÷5×2、10×2/5。在这个部分的教学,我主要把教学重点放在两种计算方法的意义与联系上,我采取小组讨论的方法,让学生去分析这两种算法的本质联系。但在汇报环节,我有些操之过急,没有给学生更多表达的机会,自己就把答案分析给学生听了。
在整个教学环节中,我一直加强的“单位1”概念的强化和训练,我始终抓住一句话,“是谁的.几分之几?把谁看作单位1”,另外还教学生在条件中找单位“1”的一些方法,为后面的学生作一个铺垫。因为,本节课的所有习题都是用同一个数乘以几分之几,这样学生在列式时就会不考虑单位“1”而直接就用整数与分数相乘,加深学生对单位“1”的理解。这样就可以避免学生形成思维定势:因为学乘法而用乘法。
巩固练习环节,我把“练一练”再次出示,不过这次改变题目要求:用乘法列式计算。让学生再次练习,使学生体会到今天所学方法的实际作用。巩固练习部分我还安排了练习拔的第6题:一瓶饮料一共900毫升,这道练习需要学生解决的问题一共有4道,其中问题(1)是3瓶饮料多少毫升?其它三道问题都是用不同的表达方式求900毫升的几分之几是多少。因此在共同解决四道问题以后,我让学生找出其中一道与其他几道表示意义不同的。并且分析原因,目地就是强化分数乘整数的不同意义。
本次课的教学,有以下几个问题值得深思:
一、备课设计时要多了解学生情况。由于刚接班不久,学生的基础、能力等方面的情况掌握不多,在教学时,不敢放手,导致学生的思维、表达缺乏深度。
二、要在教会学生学习方法上多下功夫。本次课的教学在这方面进行了一些探索,但不够。今后要加强这一环节的引导。提高课堂教学的实效性。
《分数乘法》教学反思6
一、教材分析:
六年级上册第二单元围绕"分数乘法"这个主题。本单元教学内容包括三部分内容:分数乘法,解决问题和倒数。本单元是在整数乘法,分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数,小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生应用数学的意识和能力。
根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的内容单独安排。即把解决"求一个数的几分之几是多少"这一类问题组成"解决问题"一个小节,通过教学使学生理解这类问题的数量关系,掌握解题思路。与整数,小数的计算教学相同,教材体现结合具体情境体会运算意义的要求。不再单独教学分数乘法的意义,而是通过解决实际问题,结合计算过程去理解计算的意义。同时也不再呈现分数乘法的.计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观与操作等手段,在重点关键处加以提示和引导,这样可以为学生探索与交流提供更多的空间。
学情分析:
六年级的学生已经掌握整数乘法,小数乘法的计算,对于分数有一定的理解,能够在现实情境中体现和理解数学的理念。思维已经向抽象发展,需要学习透过事物表象揭示事物的本质。
二、单元目标解读
根据第三学段提出的"计算和运用"目标和本单元的特点确定本单元的教学目标:
1、理解并掌握分数乘法的计算方法,会进行分数乘法计算。
2、理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。
3、会解答求一个数的几分之几是多少的实际问题。
4、理解倒数的意义,掌握求倒数的方法。
本单元的教学重点,难点是:
1、掌握分数乘法的计算方法,会进行分数乘法的计算。
2、会解答求一个数的同分之几是多少的实际问题。
3、理解和掌握求倒数的方法。
三、主题单元教学构想:
(一)注意三个原则
1、在已有知识的基础上,帮助学生自主构建新的知识。
2、让学生在现实情景中学习计算。
3、改变学生学习方式,通过动手操作,自主探索和合作交流的方式学习分数乘法。
(二)设计思路
本单元教学内容计划用15课时。
第一部分:分数乘法(7课时)
1、通过直观与操作帮助学生理解分数乘法的算理,会正确进行计算。
2、加强自主探索与合作交流。
第二部分:解决问题(5课时)
1、紧密联系分数乘法的意义,理解和掌握解决问题的思路与方法。
2、借助线段图帮助学生理解数量关系。
第三部分:倒数的认识(1课时)
1、让学生充分观察讨论,找出算式的特点。
2、特别理解"互为倒数"的含义
第四部分:整理和复习(2课时)
1、以知识整理措施形式回顾本单元的主要学习内容。
2、安排练习。
四、教学反思
"分数乘法"是这一单元的核心内容,不仅分数除法是以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握分数乘法具有重要的意义。教学本单元后我的感受是:
1、分数乘法解决问题对单位"1"的理解,重点应放在在应用题中找单位"1"的量以及怎样找的上面。为以后应用题教学作好辅垫。
2、在以后教学前我还要深钻教材,把握好课本的度。
3、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学。提高教学质量。
《分数乘法》教学反思7
例2的教学是重点帮助学生看出单位“1”的量,找到单位“1”,理解男运动员占九分之五的含义,那女运动员占几分之几?那单位“1”的几分之几是多少怎么做呢?对于这个例题学生都掌握的很好,也发现了这种题型的特点,单位“1”都是两个量组成的已知单位“1”的数量和其中一个量的关系求另一个数量,这种题型的通用方法就是可以先求另一个量的关系,然后用求一个数的几分之几是多少用乘法来计算。通过课后的反馈学生都完成的不错。
本节课主要内容是对例3的教学,让学生重点理解“今年的班级数比去年多六分之一”的含义,弄清楚把哪个量看做单位“1”去年班级数的六分之一是什么?去年的班级数乘六分之一是什么?有的学生对于这个确实不是很理解,这个例题是两个量之间的`关系,其中一个量是单位“1”所以画线段图时要画两条。
学生对于线段图的掌握还是可以的,如果没有线段图的时候可能就是出现理解的偏差,分析原因可能是在第二单元求一个数的几分之几是多少没有理解。所以课后我经常画线段图来帮助学生女理解,也教会学生用线段图帮助他们分析题中的数量关系。
《分数乘法》教学反思8
分数乘法应用题大致可分为两部分:一部分应用题中的已知数是分数,但数量关系和解答方法与整数应用题相同;另一部分应用题是由于分数乘法意义的扩展而新出现的。本节课教学就属于“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用,它是分数应用题中最基本的。不仅分数乘法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。教学本课后的感受是:
1、开始结合复习题让学生回忆一个数乘分数的意义。对分数的意义进一步加深认识,教学反思《《分数乘法应用题(一)》教学反思》。
2、复习求一个数的几分之几是多少的文字题,为学习相应的分数应用题做准备。
3、在教学中我只注重了根据分数意义来分析题意,而忽视了对单位“1”的理解,重点应放在在应用题中找单位“1”的'量以及怎样找的,为以后应用题教学做好铺垫。
4、以后在教学前我还要深钻教材,把握好课本的度,向其他老师请教,取长补短。特别是多向同年级的老师学习,提高自己的教学水平。
5、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习
《分数乘法》教学反思9
我上了一节分数乘法应用题。课后我感到既有成功的喜悦也有不足,具体体现在以下几个方面:
一、数形结合的思想
由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得中观重要了纵观教材中,数形结合思想的渗透也有着不同的层次,例如分数乘法 ( 一 ) 和分数乘法 ( 二 ) 中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法 ( 三 ) 中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的'图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
二、是充分重视学生“说”的训练。
在以前应用题的教学中,对“说”的训练重视的不够,表现为学生只会做题不会说,这个片断,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法,以及方法是怎样想出来的。引导学生把思考过程有条理的说出来,为了深化学生的思维,避免死记硬背、机械模仿,解题后要求说出算式的依据,在说中及时得到反馈,进行矫正、补充,这种“说”的训练,不仅能帮助学生正确分析数量关系,提高分析、解决问题的能力,还能促进语言与思维的协调发展。
三、是很好地解决了“大部分学生会,怎么教“的问题。
因为学生已经掌握了一个数乘分数的意义,在此基础上学生本节内容并不难,为此我引导学生主动探索,培养他们学习应用题的兴趣。在以往的教学中,往往要求学生死记数量关系,找出谁是单位“ 1 ”,谁是分率,知道要求是分率对应的问题用乘法计算等,学生只会用一种方法,长此以往,对灵活解题是不利的,在这节课中,问题开放,采用四人小组合作,引导学生探索、相互研究,大胆发表不同的见解,让学生在“说”中学到知识,增长本领。
《分数乘法》教学反思10
一、为什么分子相成、分母相乘。
应该说,让学生结合图形理解为什么分母相乘是直观的,从课堂的1/5来看,学生现有5份中的1份,现在1/5的1/2就是把这一份平均分成2份取其中的1 份,那么要平均分成相等的几份,就相当于是把每一份都分成2份,5×2就是10,5×4就是20。那么为什么是分子相乘呢?在自己再次修改之后进行教学的时候,发现2/5×2/3为什么分子是2×2,其实第一个2表示是有2竖,第二个2表示是有2行,2×2就是2/5×2/3涂出的部分。
二、如何从分数乘整数到分数乘分数。
分数乘整数有几个数的几分之几和几个几分之几相加两种意义,到底哪一种意义可以迁移到分数成分当中来呢?1/5的1/2,感觉好像是一个数的几分之几?那么是否可以从这里入手,那么时候可以从3的1/2迁移到1/5的1/2呢?感觉不是非常的好,不利于分数图形的理解。那么情景图中的1/5×3理解成3个1/5,那么1/5×1/2就可以理解成1/2个1/5。比较之后,最终我选择了1/5的'3倍来理解,1/5的1/2。进行迁移。
三、给学生一个自主的机会。
练一练在第2小题完成之后,安排了这样一个环节:分数相乘的积一定小于每一个乘数吗?在教学中,两个班,一个班一带而过,一个班花大力气让学生思考,让学生先思考,再从这道题目当中找出有哪几道题是小于的,那几道题目不是的?再让学生观察为什么有的是,有的不是?不是的原因是什么?观察发现当乘大于1的数的时候,就是大于另一个乘数了。这时候引导学生以前有没有这样的结论,小数当中也是如此,让学生把新知建构到旧知当中。
比较两次不同的教学过程,关于时间与效率两者之间的矛盾,该如何有效地进行处理,的确是一个值得去探究的问题。
《分数乘法》教学反思11
这节课是上周上的,杂事纷扰,一直没有闲暇来好好写写当时教这节课的感受。
这节课上下来,有两个重点需要把握,一个是理解分数乘分数的意义,这是解决分数乘分数所有的实际问题的前提,如果意义不理解,问题解决犹如空中楼阁。那教学的第一个板块就是意义的教学,上一节课我们已经知道分数乘整数的另外一个意义,即求一个数的几分之几的是多少,我从这个意义入手,延伸到一个分数的`几分之几也是需要用分数乘法的。
借助《庄子。天下》那句“一尺之锤,日取一半,万世不竭”入手,先回顾一个整数的几分之几用分数乘法,再引申到当一个分数的几分之几时同样也是可以用分数乘法的,在出示分数乘分数的时候,同时出示具体的木棒截取的过程,让孩子在具体实物中理解,其实其中一个分数表示一个具体的量,而另外一个分数就是一种分法(或是按照孩子们的想法叫做截法),或是有些孩子理解到分数乘分数其实是分了两次。在这个环节,孩子们需要重点理解意义,同时也初步感受到分数乘分数可以用分母乘分母,分子乘分子。
那接下来的环节就直捣黄龙了,深入探索分数乘分数的方法,当然很多孩子已经知道方法就是分母乘分母,分子乘分子,但是不知道为什么那样,那下面的探索环节就是要弄清楚方法的原理。算理的理解还是需要借助直观模型,因为算理在学生头脑里是一个很抽象的东西。当然在探索之前,我们还是对意义进行了再次强调,还把两个乘数反一反,再说意义。紧接着出示书本例题,放手让孩子去画图,在一个长方形中涂出最后的结果。涂完之后,把不同的结果反馈到黑板上,孩子们分别说,说的过程中我进行一些重点追问,这些追问无非就是在关注每一次分法。全部说完之后,再次沟通各种方式。开始提炼这些图形与算式之间的共同联系,这种联系就是在明晰算理的内在原理,孩子们归纳发现,原来在图形中,被分了2次之后,这个总份数其实就是分母乘分母(也就是最终结果的分母),比较难理解的是在图形中怎么体现分子乘分子,经过一番激辩,孩子们渐渐明白两次取出份数之积就是最终答案的分子,在图形中就是先取了几份,再在这几份中取出几份,也就是说是几份中的几份,那最红取出的总份数就是把两次取出份数乘起来就好了。
最后强调先约分,而不是最终结果出来在约分,这样计算会更加简洁,不过从课后作业来看,如何约分还是需要细讲。
《分数乘法》教学反思12
本单元的重点有两个,而且这两个重点是交织在一起的:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。
分析教学内容从数学应用的角度来备课,分数乘法这一单元学生只要能从具体的问题中判断两个数据之间存在的相乘关系即可,只是这个相乘的关系要有新的拓展,即求几个相同加数的和、求一个数的几倍是多少和求一个数的几分之几是多少。教学时我重点关注以下几方面予以检测,从而把复杂问题简单化。
⑴让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
⑵强化分率与数量的'一一对应关系。
⑶帮助学生理解一个数的几分之几与一个数占另一个数的几分之几的不同。
⑷利用分数进行单位互化,如:2/5时=( )分 1/5吨=( )千克
在本单元教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。涂一涂、算一算的重点放在涂上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。
求一个数的几分之几是多少。在教学中我突出了类比迁移和数形结合的方法,将分数意义以图的形式呈现,做到以形论数,在通过对图的理解抽象出问题实质就是求一个数的几倍(几分之几)是多少,运用类比的方法得出求6的2倍是多少和求6的1/2是多少都用乘法,进而列出算式,完成以数表形,使学生理解求一个数的几分之几是多少用乘法的道理。
优点:在这样的教学方式下,大部分学生都能进行分数乘法的计算。
《分数乘法》教学反思13
分数乘除法应用题是较复杂的分数应用题的基础,教者在本节课中的目的主要是为了让学生弄清分数乘法和除法应用题的区别和联系,能够应用“单位“1”的量×分率=比较量“这个数量关系,根据已知量和未知量来判断是分数乘法还是除法应用题。教材为此也安排了例2这个例题:
例2:长江流域约有120种矿产资源,可供开发的占。长江流域的矿产资源种数约占全国的30。3756
(1)长江流域可供开发的矿产资源有多少种?
(2)全国的矿产资源有多少种?
其中第(1)题是一道分数乘法应用题,第(2)题是一道分数除法应用题。教材的编排意图是通过两题的比较,去找到二者的区别和联系。为此,我在教学中的流程也很简明:先学生自己两道题,然后再讨论两道题的联系和区别,最后教师总结。整个过程充分体现了学生的主动性,充分给予时间和空间,让学生参与了知识的形成过程,体验成功的快乐。
然而,我教学中却发现:学生要发现两道题的区别和联系并不容易,课后从学生的作业情况看效果也不是很理想。是什么阻碍了学生知识的形成呢?我在课后经过分析,认为是教材编排的这个例题对于本课的知识目标形成的针对性不强,或者说是例题中包含的其他东西太多干扰了学生对两题的对比。
首先,两道题中包含了3个量即长江流域的矿产资源、长江流域可供开发的矿产资源和全国的矿产资源。这三个量中有两个量都是单位“1”,虽然这并没有超出学生的现有的认知水平,但是却使问题复杂化了,对于本课的教学目的起到了一个干扰作用。
其次,本例中的第(1)题中的单位“1”的量是长江流域的矿产资源,是已知量。而第(2)题中的单位“1”的量是全国的矿产资源,是未知量。两道题的数量关系分别是:长江流域的矿产资源×=长江流域可供开发的.资源和全国的矿产资源×30=长江流域的矿产资3756源。两道题的数量关系和单位“1”的量都不一样,也不利于学生比较。这也造成本节课目标达成的难度增加。
最后,例题中文字较多,特别是几个量的文字叙述较多,这也给部分学生,特别是理解能力较差的学生增添了麻烦,他们也许要为弄清题意费上一阵时间。
综上所述,我认为教材在编写这个例题也许太过注重联系生活实际等方面的原因,造成对本课的目标达成难度增大。这个例题是不合适的。为此我设计了这样一个区别比较的例题:
例2:(1)果园里有60果桃树,李树是桃树的,李树有多少棵?
(2)果园里有60果李树,李树是桃树的,李树有多少棵?
这样的设计我认为有这样几个好处:
1、单位“1”不变,都是桃树。
2、数量关系都是一样:桃树×=李树。既然单位“1”不变,数量关系都一样,为什么却一个是乘法,一个是除法呢?学生再通过565656比较,很容易就发现第1题的单位“1”是已知量,求比较量,当然用乘法。第2题的单位“1”是未知量,求单位“1”,当然是用比较量除以分率,是用除法。
通过这样的例题设计,我认为简明扼要,利于学生认清分数乘除法应用题的区别和联系,更好掌握分数乘除法应用题,为后面的较复杂的分数应用题打下基础
《分数乘法》教学反思14
分数乘法计算对于学生而言是新的内容,它的计算方法与整数、小数的计算方法有很大区别,记住分数乘法的计算法则并不困难,但让学生理解分数乘法的算理,尤其是分数乘分数的算理,是本节课教学的难点,分数乘法(分数乘分数)教学反思。
《标准》指出,有效的学习活动不能单纯地依赖模仿与记忆。教学中要改变以往以例题、示范、讲解为主的教学方式,改变以记忆法则,机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中。
学习这节课前,我先让学生自学,让他们试着去解决课本上的几个问题:
课上让学生交流探索的结果,教学反思《分数乘法(分数乘分数)教学反思》。我发现大部分学生能在前一问的基础上可以类推出分数乘分数的方法。
有的学生采用了折纸的方法,一步步的给大家讲解,效果也不错。
学生讲解的头头是道,说实话,这节课给了我很大的震撼,千万不要低估学生的能力,该放手时一定要放手让学生去做,很多时候他们会给你意想不到的'惊喜!
整节课的大部分时间都是安排学生的探究、讨论活动,让学生在讨论研究中提出猜想,最后在举例中检验猜想后达成共识,得到分数乘分数的计算法则,理解算理,由于学生的探究花了大量时间,最后只是对法则进行了总结,从时间的分配上来说,后面的巩固练习时间很少,学生对分数乘分数到底掌握到什么情况心中没数。这让我想到,我们在课堂上无论事先设计的多么完善,都要根据学生的实际情况,跟着学生的思路走,而不能死套教案,一定要灵活处理。
遗憾的地方:能讲解的学生毕竟是少数,大部分的孩子是听会的,个别学生对算理仍然不能很好的理解,对后续学习会有一定影响,对这部分学生要多帮助、多鼓励,树立他们的信心!
《分数乘法》教学反思15
本单元教学分数乘法,是在理解了分数的意义,掌握了分数加减法的基础上编排的。它能进一步促使学生理解分数的意义为后面教学分数除法打下基础。本单元教学内容包括分数乘整数,一个数乘分数、分数混合运算、整数乘法运算定律推广到分数乘法、连续求一个数的几分之几是多少的解决问题和求比一个数的多(或少)几分之几的数是多少的解决问题。在实际教学中我做到一下几点:
一、充分利用教材资源,注重数形结合
本单元概念较多,且比较抽象,而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,我运用适当的图形、图示来说明数学概念的含义,化抽象为具体、直观,帮助学生理解。例如,在教学分数乘分数时,例3是李伯伯家有一块1/2公顷的地,种土豆的`面积占这块地的1/5,种土豆的面积是多少公顷?若只是空洞地讲学生很难理解,于是我画了一个长方形来表示1公顷的地,先让学生找出1/2公顷有多大,用阴影部分表示,有的竖着分,有的横着分,再找出1/2公顷的1/5,就是把1/2公顷平均分成5份,取其中的1份,用反方向的阴影部分表示。再观察两个阴影重叠部分占了整个1公顷地几分之几,用虚线分好,这样占了1公顷地几分之几也就是几分之几公顷。结合图示法学生很自然地推导出了分数乘分数的方法。
二、解决问题注重解法多样化,拓展学生思维
学生的思维应该是开放的、发散的,教师在教学中应当鼓励学生从多角度、多方位思考问题,注重算法、解决多样化,让学生更爱动脑,数学水平提高一个层次。例如在教学例9这类求地一个数多(或少)几分之几的数是多少的解决问题时,我先让学生找出单位“1”,画出线段图,看图思考有哪些解法。有的学生想到了可以用单位“1”乘对应分率得到对应的具体的量,有的学生想到可以用单位“1”加上或减去多或少的部分得到对应的具体的量,也有的学生想到先求出1份是多少,再求出多份是多少的办法。这样集中各个学生的思维,大部分同学都掌握了三种方法,解题时可选择自己最理解的方法做,让不同层次的学生得到了不同的发展。
在这样的教学下,大部分学生对本单元知识掌握的较好,只是每次解决问题我基本都让学生画出线段,借助线段图学生较为容易就能解决了,但有的学生比较懒不肯画线段图而往往出错,因为这样的线段图并没有在他脑海中形成,这是我教学中的困惑,我将继续研究。
【《分数乘法》教学反思】相关文章:
《分数乘法》教学反思10-10
分数乘法教学反思04-02
分数的乘法教学反思15篇08-10
分数乘法教学反思15篇07-11
分数乘法教学反思(15篇)07-11
数学分数乘法教学反思04-22
分数的乘法教学反思(15篇)01-31
分数乘法教学反思(精选15篇)01-31
《分数乘法》教学反思(15篇)04-11