- 相关推荐
《正比例和反比例》教学反思优秀
作为一位优秀的老师,课堂教学是我们的工作之一,通过教学反思能很快的发现自己的讲课缺点,教学反思应该怎么写呢?下面是小编收集整理的《正比例和反比例》教学反思优秀,仅供参考,希望能够帮助到大家。
《正比例和反比例》教学反思优秀1
在教学《正比例和反比例的复习》这一课时,我就开门见山的向学生提问那谁来说说正比例和反比例之间的有什么区别和联系?完成这张表格。出示小黑板。
正比例和反比例的比较:
让学生通过观察表格,总结出两种比例关系下两种量不同的变化规律,即另一方面的.不同点。
在原来的教学设计中,我只是简单的安排了复习,让学生口述正反比例的意义,然后再让学生做几个判断正反比例的题目,在实际上的过程中,我让学生自己复习完成上面的表格。
目的有两个:
1、使一部分不能完整说出意义的后进生有个清楚的再认识,达到巩固旧知的教学目的。
2、为让学生准确说出两者的不同点和相同点铺设道路。学生常无法用准确的语言总结两者的联系表达出来,所以这一小小的临时改动收到了良好的效果。
因此,个人认为在以后的教学设计中,复习的设计也要多样化,要把复习当作新课一样来加以修改、创新,让复习课取得更好的教学效果。
《正比例和反比例》教学反思优秀2
正比例的教学,是在学生掌握了比例的好处和基本性质的基础上进行教学的,着重使学生理解正比例的好处。
我在教学时首先细致安排学生初步感知,透过让学生写出路程与时光的'比,求比值,找规律,写数量关系,让学生初步感知正比例的要点。
第二,仅有例题的首次感知学生还不能构成正比例的概念,所以,我变换情境,选取与例题不一样的数量:铅笔的数量和总价,耕地的时光和耕地总公顷数。让学生反复感知正比例概念的规律。这样既拓展了教材,又进一步增加了学生的感性认识。为学生高度概括正比例概念打下了基础。
第三有了前面充分的感性认识,我提出几个问题,引导学生有序的思考,以小组合作交流的形式,让学生进一步突破正比例概念中的一些关键词,如:相关联的量,相对应的数,比值等,学生在合作学习时互相交流,互相讨论,把各自对正比例概念的感知会聚,综合,从而抽象出正比例的好处是:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值必须,这两种量就叫做成正比例的量。
《正比例和反比例》教学反思优秀3
正、反比例知识,内容抽象,学生难以接受。学好正比例知识是学习反比例知识的基础。因此,使学生正确的理解正比例的意义是本节课的重点。在实际教学中,我注意了以下几点:
1、联系生活,从生活中引入。
数学来源于生活,又服务于生活。新的《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。关注学生已有的`生活经验和兴趣,通过现实生活中的素材引入新课,使抽象的数学知识具有丰富的现实背景,为学生的数学学习提供了生动活泼、主动的材料与环境。
2、在观察中思考。
小学生学习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程。例如:在教学例题时,出示了甲乙两辆汽车所行路程和时间的表格后,先观察这两个表格,然后思考下面的问题:
(1)表1、表2中有哪两种量?它们相关联吗?
(2)哪个表中的两种量的变化更有规律?有什么规律?
上面思考题中“更有”两个字对学生的思维有一定定向作用,让学生着重去寻找表1中的规律。在学生深入观察、独立思考、合作交流后,必会发现表1中的两个量变化的规律。另外,由于事例熟悉,且数据计算起来很简单,便于学生口算,学生学习时能将更多的时间和精力用于思考这两种量的变化规律上,进而便于提示正比例的意义。
《正比例和反比例》教学反思优秀4
我们发现教材把比的认识放到了六年级的上学期,学完了百分数之后就认识了比,而删除了比例的意义和性质、解比例以及应用正反比应用题。而只研究正反比例(图片),加入了变化的量(图片),、画一画(图片)、探究与发现(图片),等内容。
为什么加变化的量、画一画、探究与发现等内容?
由困惑引发了我们的思考。通过学习和实践我们有了下面的答案。
其一在《课标》中,更强调了通过绘图、估计值、找实例交流等不同于以往的教学活动,帮助学生体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,为以后念打下基础。学生绘图的过程可以说是他亲身体验的过程,是他“经历运用数学符号和图形描述现实世界的过程”,只有亲身的经历和体验,才能给学生留下深刻的印象,真正体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,加深了对函数的认识。多种研究也表明,为了有助于学生对函数思想的理解,应使他们对函数的多种表示———数值表示(表格)、图像表示、解析表示(关系式),有丰富的经历。在正比例、反比例的学习中,应十分重视三种方式的结合。函数图像更有利于学生直观的理解变量的变化关系,并且利用规律解决问题,更好的进行函数思想的渗透。这一点可以从课堂和课后的作业中找到答案。
其二为今后对函数进一步的.学习做准备我们再来看一看函数课程的发展链。
小学:数的认识,图形数量找规律,数的计算,图形周长和面积,字母表示数—变量,统计—变量,商不变的性质—常函数,正反比例—函数。
初中:一次函数,二次函数,正反比例函数,函数概念的初步认识。
高中:函数概念的映射定义。一些具体函数模型—简单幂函数及其拓展,实际函数的模型——分段函数,指数函数,对数函数,三角函数,数列,函数思想的广泛应用。
到了大学还在继续着对函数的学习,可以看出小学阶段的只是对函数的最初级的最浅显的认识,但却影响着孩子今后对函数的学习。从多方面理解变化的量,打破了思维的局限,利于今后函数概念正确的建立。
《正比例和反比例》教学反思优秀5
“正比例的意义”是一个对于小学生来说十分抽象的数学概念性知识。昨日,我试教了这一课,在教学中调动了学生的生活经验,用日常概念来帮忙学生理解数学概念,帮忙学生初步感知,完成对新知的建构。然后,经过例题指导学生主动概括出正比例的本质特征,学生的理解深刻,准确。
由于学生在上学期已经学过比的意义、比的化简与比的应用。在上一节课也体会了生活中存在的变量之间的关系,这些都为学生学习正比例奠定了基础,正比例关系是数学中比较重要的一种数量关系,它也为学习反比例进行铺垫,同时,学生理解正比例的意义往往比较困难。为此,我密切联系学生已有的生活经验和学习经验,设计了系列情境,让学生体会生活中存在很多相关联的量,它们之间的关系有着共同之处,从而引发学生的讨论和思考,引导学生认识成正比例的量以及正比例在生活中的广泛存在。
我首先给学生提共了正方形的周长与边长和面积与边长的变化关系。让学生独立填表、观察,然后与同伴交流,经过表格、图象、表达式的比较,体会到虽然正方形的周长和面积都随边长的增加而增加,但正方形的周长与边长、面积与边长的变化规律并不相同。同时,学生将初步感知“在变化过程中,正方形的周长与边长的。比值必须”,为认识正比例奠定基础。同时,借助图形直观、动态地体现了正方形的.周长与边长“成正比”的过程,为学生后面学习正比例的图象积累经验。之后,我给学生供给第二个情境:当速度必须时,汽车行驶的路程与时间的变化关系。教学时,我先让学生把汽车行驶的时间和路程表填完整,引导学生观察并思考:当时间发生变化时,路程怎样变化第三个情境则是,购买同一种苹果时,应付的钱数与购买的苹果质量之间的关系。
经过以上这两个实例,引导学生认识到:路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。在此基础上,让学生经过比较,概括出以上实例的共同点,引出“正比例”。
最终,经过小结、练习让学生总结出确定两种量是否成正比例的依据:
1、两种相关联的变量;
2、当一种量变化时,另一种量也随着变化;
3、这两种量中相对应的两个数的比值必须。
《正比例和反比例》教学反思优秀6
在教学过程中,精心安排数学教学活动,使学生在联想、观察、讨论、类推、验证中总结了正比例的好处,体现了学生是学习的主人地位,渗透着学生主动探索的过程。无论是学生对正比例过程的描述,还是学生对正比例好处的系统比较与认识,都留下了学生成功的足印。让学生体验数学,享受成功,找到学数学自信是老师努力探索的境界,改变长期构成的、习惯了的传统教学模式。
在教学过程中,为了让学生更容易的理解,直观展示(课件),让学生理解“杯子是相同的”真正含义,从而探究变化规律。探究过程学生是比较用心的,但由于学生刚接触成正比例,因此对其好处表达不完整,为了化难为易,我采取的'填充式,建立一个表达的模式,帮忙学生理解和表述。
在学习过程中,由于学生用心参与,效果是理想的,但在练习中,个性是一些意思不明显的题目,学生不假思索做出决定的比较多,如:“圆的面积和半径成不成正比例?”很多学生每透过分析,半径是可变量(不必须)。针对这种状况,打算安排一节练习课,练习前对学生进行思想教育,端正学习态度,要求他们要把两个量的等量关系写出来,再作分析比值是否必须,我相信透过下节课的练习,学生对正比例掌握是比较理想的。
《正比例和反比例》教学反思优秀7
意义建构需要在认知系统中找到与之相关联的旧知识作为“固定点”,能作为“固定点”的旧知识,能够是统一的,也能够是对立的。在这一课中,我设计了三组相关联的量:学生经过观查比较,抽象概括出正比例的意义。在上述的几种关系中,都是比值不变的关系。经过比较,学生很容易抓住概念中最本质的东西,使正比例关系中的比值必须,在学生头脑中留下更深刻的印像。在理解正比例意义的同时出示了其他的如和、差、积的关系,经过比较,拓宽了学生的知识面。心理学研究证明,比较能使人受到更强烈刺激。黑白两色放在一齐,白的更白,黑的更黑,就是这个道理。几种关系放在一齐比较,也能够到达这样的效果。
学生感知的数学材料,离学生越近,学生越感兴趣,也就越容易理解,对探索自我提出的问题具有更高的热情。本节课开始所举的三个例子,遵循了尊重学生已有知识水平的原则,选取的都是学生十分熟悉的例子。这是学生一开始就以饱满的热情投入到学习中来的重要原因。这些例题不仅仅有必须的.趣味性,并且其中包含的道理很容易理解(学生已学的数量关系)。在此基础上,要学生将其中变量与不变量的规律找出来,就显得容易多了。找出规律后,再建立数学模型,也就水到渠成了。当学生初步感知成正比例关系的特点,心中构成一种朦胧的概念后,让学生举例,例子来自学生,不仅仅创设了开放的问题情境,并且营造了宽松的学习氛围。在这样的一系列例子的基础上,抽象概括出完整、明确的正比例意义,更贴合学生的认知规律。
在整个教学过程中,教师只向学生供给部分的素材,还有部分素材来自学生。整个探究过程中给学生较充分的思考和交流的空间,引导学生开展自主性的数学活动。如找量的变化规律、变中不变的因素、比较找出本质特征、猜想、给出定义、字母公式表示、解决问题、画图等,主要由学生进行,学生经历“观察、分析、比较、归纳、应用”过程。
【《正比例和反比例》教学反思优秀】相关文章:
正比例和反比例的教学反思03-13
正比例教学反思优秀05-26
正比例教学反思10-22
《正比例》教学反思11-23
《反比例函数的图象和性质》教学反思04-22
《正比例函数》教学反思01-31
反比例意义教学反思01-04
《反比例意义》教学反思 12-10
正比例教学反思15篇11-22